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ABSTRACT
In this paper, for the first time, an equivalent circuit electri-

cal model is integrated with a two-state thermal model to form
an electro-thermal model for cylindrical lithium ion batteries.
The parameterization of such model for an A123 26650 LiFePO4
cylindrical battery is presented. The resistances and capaci-
tances of the equivalent circuit model are identified at different
temperatures and states of charge (SOC), for charging and dis-
charging. Functions are chosen to characterize the fitted param-
eters. A two-state thermal model is used to approximate the core
and surface temperatures of the battery. The electrical model
is coupled with the thermal model through heat generation and
the thermal states are in turn feeding a radially averaged cell
temperature affecting the parameters of the electrical model. Pa-
rameters of the thermal model are identified using a least squares
algorithm. The electro-thermal model is then validated against
voltage and surface temperature measurements from a realistic
drive cycle experiment.

1 INTRODUCTION
Lithium Ion Batteries are attractive energy storage devices

for Hybrid Electric (HEV), Plug In Hybrid Electric (PHEV), and
Electric Vehicles (EV) due to their reasonable power and energy
density. The ability to accurately predict the electrical and tem-
perature dynamics of a battery is critical for designing onboard
battery management systems (BMS), and thermal management
systems.

∗Address all correspondence to this author.

Electrical models vary in complexity. For some applications,
a simple model capturing the basic electrical behavior can be suf-
ficient (eg. an OCV-R model). There are more complex electro-
chemical models [1–3] that are highly accurate [4–6], but hard
to be fully parameterized [6], and require large computational
capacity. Therefore, they are not suitable for control oriented
modeling. Equivalent circuit models are commonly used, which
offer a tradeoff between accuracy and simplicity, and are suitable
for control oriented applications [7–11].

The equivalent circuit model can capture the terminal volt-
age of the battery and has been widely adopted since the work
in [12]. The voltage supply in the equivalent circuit, shown
in Fig. 1, represents the open circuit voltage (VOCV ) which is a
function of state of charge. The series resistance (Rs) represents
internal resistance of the battery. The voltage drop across the
two resistor-capacitor (RC) pairs (V1 and V2) are used to model
the dynamic voltage losses due to lithium diffusion in the solid
phase and in the electrolyte [13]. These circuit elements depend
on state of charge (SOC), temperature, and current direction as
shown in [10]. These parameter dependencies are important for
accurately capturing the dynamics of battery terminal voltage
throughout a usable range of temperature and state of charge.

In addition to predicting the terminal voltage, an accurate
model of the battery temperature is needed for control and ther-
mal management to constrain the operating temperature range.
In common battery management systems (BMS), the battery
temperature is often monitored to prevent over-heating. In ap-
plications with high power demands, such as automotive traction
batteries, the internal temperature of the battery may rise quickly,
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due to joule heating, and can be higher than the surface temper-
ature. However, in practice only the surface temperature of the
battery may be measured. If only the surface temperature is used
for safety monitoring, there exists the risk of over-heating. In
addition, the degradation profile of lithium ion batteries is tem-
perature dependent. The core temperature, which is closer to (if
not exactly) the temperature of the electrode assembly, will pro-
vide a more accurate reference for the battery lifetime estimation
in BMS. Therefore, a thermal model capable of predicting the
core temperature is needed for battery thermal management.

Coupled electro-thermal models have been investigated us-
ing PDE based electrical models in [2, 4, 14], and equivalent cir-
cuit based electrical models in [15–18]. The thermal models used
in these studies have either been complex, or very simple only
capturing the lumped temperature. Complex thermal models that
capture the detailed temperature distribution in a cell have been
used [14, 19, 20], but require a large amount of computational
resources, making them unsuitable for control oriented model-
ing. A simple thermal model that predicts the critical tempera-
ture of a cylindrical cell is desired, such as the two state thermal
model that has been studied in [21, 22]. This model has the abil-
ity to capture the core temperature Tc of a cylindrical cell which
is greater than the surface temperature Ts under high discharge
rates [23]. The two state thermal model can be further expanded
to a battery pack configuration to estimate unmeasured tempera-
tures as presented in [22].

In this paper, for the first time, an OCV-R-RC-RC equiva-
lent circuit electrical model is integrated with a two state thermal
model to form an electro-thermal model for LFP batteries. Such
model is valuable for onboard BMS capable of conducting both
SOC estimation and temperature monitoring. In Section 2, the
coupling between the heat generation and temperature in the in-
tegrated electro-thermal model is highlighted by the temperature
dependence of the equivalent circuit parameters. In Section 3, we
first show how the electrical model can be parameterized using a
low current rate so that isothermal conditions could be assumed.
The identified parameters and their dependencies on SOC, cur-
rent direction, and temperature are examined. Basis functions
are chosen to represent the temperature and SOC dependence of
the circuit elements. Next the parameters of the thermal model
are identified using the heat generation calculated by the mod-
eled open circuit voltage for a high C-rate drive cycle. Finally in
Section 4, the coupled electro-thermal model is validated against
the measured terminal voltage and surface temperature data from
a drive cycle experiment.

2 BATTERY MODEL
In this section the electrical and thermal battery models

are presented. An OCV-R-RC-RC model is chosen to approx-
imate the electrical dynamics, while a two-state thermal model is
adopted to capture the core and surface temperatures of the bat-
tery. The model parameter dependencies are introduced, and an
electro-thermal model is formed through a heat generation term.

2.1 Electrical Model
The battery state of charge (SOC) is defined by current inte-

gration as,

˙SOC =− 1
3600Cn

I. (1)

The nominal capacity of the cell Cn(Ah) is found by cycling the
battery cell per manufacturer recommendation [24]. The charg-
ing profile consists of a Constant Current - Constant Voltage
(CC-CV) charging cycle that is terminated when the current ta-
pers below 50mA, and the voltage at the end of discharge is 2.0 V.
The battery electrical dynamics are modeled by an equivalent cir-
cuit as seen in Fig. 1. The double RC model structure is a good
choice for this battery chemistry, as shown in [25]. The two RC
pairs represent a slow and fast time constant for the voltage re-
covery as shown by,

V̇1 =− 1
R1C1

V1 +
1

C1
I

V̇2 =− 1
R2C2

V2 +
1

C2
I.

(2)

The states V1 and V2 are the capacitor voltages. The parameters
R1(Ω),C1(F) correspond to the first RC pair, and R2(Ω),C2(F)
to the second RC pair. The states of the electrical model are SOC,
V1, and V2. The current I is the input, and the model output is the
battery terminal voltage VT defined as,

VT =VOCV −V1 −V2 − IRs, (3)

where VOCV represents the open circuit voltage, and Rs represents
the internal resistance of the cell. The VOCV curve is assumed to
be the average of the charge and discharge curves taken at very
low current (C/20), since the LiFePO4 cell chemistry is known
to yield a hysteresis effect as shown in [25,26]. This phenomena
has been modeled for NiMH and lithium ion cells [25–29], but
will be neglected in this study. The open circuit voltage VOCV
depends only on SOC; however, the equivalent circuit parameters
depend on SOC, temperature, and current direction as shown in
[10] and the results of this paper.

The cell temperature is driven by heat generation Q(W ) de-
fined as,

Q = I(VOCV −VT ). (4)

The heat generation Q in the battery cell is defined by the polar-
ization heat from joule heating and energy dissipated in the elec-
trode over-potentials [19]. The effect of the entropic heat gener-
ation is excluded for simplicity, as it is relatively small compared
to the total heat generation for an LiFePO4 cell as shown by [23].
The entropic heat would contribute less than 1% of mean Q for
the drive cycle used in this paper.
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Figure 1. SINGLE CELL EQUIVALENT CIRCUIT MODEL.

2.2 Thermal Model
The radial temperature distribution inside a cylindrical bat-

tery can be described by PDEs based on the heat generation and
transfer. Here, a simplified two state thermal model is defined as

CcṪc = Q+
Ts −Tc

Rc

CsṪs =
Tf −Ts

Ru
− Ts −Tc

Rc

, (5)

where Tc(
oC) and Ts(

oC) represent the core and surface temper-
ature states respectively. The temperature used by the equivalent
circuit model is the mean of the core and surface temperatures
defined as Tm(

oC),

Tm =
Ts +Tc

2
. (6)

The inputs are the inlet air coolant temperature Tf (
oC) and the

heat generation Q calculated by the electrical model shown by
Eq. 4. The parameters Cc(J/K) and Cs(J/K) are the lumped heat
capacities of the core and surface respectively, Rc(K/W ) is the
equivalent conduction resistance between the core and surface
of the cell, and Ru(K/W ) is the equivalent convection resistance
around the cell. The convective resistance Ru depends on the flow
condition, and can be modeled for different types of coolants as
described in [30, 31].

2.3 Model Coupling
The electro-thermal model is formed by taking the calcu-

lated heat generation from the electrical model as an input to
the thermal model. The thermal model then generates the bat-
tery surface and core temperatures, used to find the mean battery
temperature for the parameters of the electrical model, as shown
in Fig. 3. The inputs of the electro-thermal model are the current
I for the electrical model, and the air inlet temperature Tf for
the thermal model. The electro-thermal model outputs are SOC,
voltage, and the battery temperatures.

Figure 2. CELL LUMPED PARAMETER THERMAL MODEL WITH TWO
STATES REPRESENTING THE CORE AND THE SURFACE TEMPERA-
TURE.

Figure 3. ELECTRO-THERMAL MODEL DIAGRAM.

The coupling results in a negative feedback, which can be
seen from the temperature dependence of the battery internal re-
sistance. To understand this coupling, consider a constant cur-
rent. Under this condition the heat generation Q will decrease
when cell temperature increases, because the reaction kinetics
become more favorable, which further reduces the internal resis-
tance. More rigorous stability analysis can be done with small
signal analysis after linearization, although nonlinear tools will
be needed for full understanding of the dynamical coupled sys-
tem.

3 MODEL PARAMETER IDENTIFICATION
In this section the electrical and thermal model parame-

terization methods are described. First the parameters of the
equivalent circuit model are identified from pulse current dis-
charge/charge and relaxation experiments at different SOC’s and
temperatures with the battery placed inside a thermal chamber.
Then using the calculated heat generation of the cell, the parame-
terization of the thermal model is presented using a least-squared
fitting algorithm originally developed in [32].
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There are different methods of identifying equivalent circuit
model parameters such as electro impedance spectroscopy (EIS)
[11], genetic algorithm (GA) optimization [25], and nonlinear
least squares curve fitting techniques [10]. Most of these involve
identifying parameters with respect to SOC as in [7–9, 11, 33],
in addition the parameters are shown to depend on temperature
and current direction [10, 15, 25]. The method selected here is to
identify parameters from experimental pulse current data using
nonlinear least squares curve fitting. Assuming isothermal con-
ditions the identification is performed at each temperature and
SOC grid point (5 parameters per pulse) in order to avoid simul-
taneous identification of the full parameter set (ie. 360 parame-
ters in this model). This reduces the computational burden and
allows us to investigate the equivalent circuit’s parameter depen-
dence on temperature and SOC.

3.1 Electrical Model Parameterization
Experiments to parameterize the electrical model for a

2.3Ah A123 26650 LiFePO4 cell were conducted using a Yoko-
gawa GS-610 Source Measure Unit to control the current,
and a Cincinnati Sub-Zero ZPHS16-3.5-SCT/AC environmental
chamber to regulate the air coolant temperature. The tests were
conducted in the environmental chamber. The battery temper-
ature is assumed to be isothermal and Tm equal to the ambient
temperature in the chamber due to the low C-rate experiments.
This assumption is consistent with the small measured rise in
surface temperature of the battery cell, less than 0.7◦C, during
the pulsed discharge.

First the capacity of the cell is measured by cycling the bat-
tery at low rate (C/20). The VOCV curve is assumed to be the av-
erage of the charge/discharge curves corresponding to the same
C/20 cycle test at 25oC. The effect of hysteresis in this cell chem-
istry results in a voltage gap between the charge and discharge
curves as explained in [25–28]. Since hysteresis is not being
modeled in this paper, the average curve is used for VOCV . It is
shown in [10], that there is a minimal effect on VOCV with re-
spect to the temperature range of study here for an LiFePO4 cell.
Therefore, VOCV is modeled with an SOC dependence.

After VOCV and capacity are determined, the experiments to
generate data for parameterization of the RC elements are con-
ducted. First the cell sits at a constant temperature set point for
2h to ensure thermal equilibrium. The battery is then charged
up to 100% SOC using a 1C CC-CV charge protocol at the 3.6V
maximum until a 50mA CV cutoff current is reached. It is then
discharged by 10%SOC at 1C rate, and relaxed for 2h. This pro-
cess is repeated until the 2V minimum is reached. The pulse
current followed by a 2h relaxation profile is repeated for the
charge direction up to the 3.6V maximum. The pulse discharg-
ing and charging is conducted at different temperatures, resulting
in 15oC,25oC,35oC,45oC datasets. The voltage and current pro-
file of one of the pulse discharge tests at 15oC is shown in Fig. 4.

The equivalent circuit parameter Rs(Ω) is found using
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Figure 4. PULSE DISCHARGE VOLTAGE AND CURRENT PROFILE.

Ohm’s law and the measured initial voltage jump ∆Vs (shown
in the inset of the top subplot of Fig. 4) defined as,

Rs =
∆Vs

I
, (7)

where I is the current applied during the pulse discharge/charge
before the relaxation period (eg. 2.3A as shown in the inset of
the bottom subplot of Fig. 4). The remaining equivalent circuit
model parameters are identified by minimizing the error in volt-
age between the model and data during the relaxation period,

JElectrical = min
n

∑
i=1

(Vrelax(i)−VT,data(i))2, (8)

using the lsqcurvefit function in MATLAB. Each instance is rep-
resented by i, starting from the first voltage relaxation datapoint
i = 1, up to the last datapoint i = n.

The voltage recovery during relaxation, Vrelax(tr), is derived
by solving Eq. (2), assuming the capacitor voltages V1, V2 at the
end of the previous rest period are zero

Vrelax(tr) = IR1(1− exp(−
tpulse

R1C1
))(1− exp(− tr

R1C1
))

+IR2(1− exp(−
tpulse

R2C2
))(1− exp(− tr

R2C2
))+ IRs,

(9)

where tpulse is duration of the constant current pulse prior to the
relaxation period, and tr is the time since the start of relaxation,
as shown in Fig. 4. The parameters to be fitted are R1, R2, C1,
and C2, and Rs is calculated by Eq. (7).
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The inclusion of two or more RC pairs in the equivalent cir-
cuit model increases the accuracy of the cell voltage dynamic
prediction as seen in [7, 9, 11, 25]. A comparison of the perfor-
mance for best fit single RC, double RC, and triple RC mod-
els is shown Fig. 5. One can see that the single RC pair model
yields large error especially during the first 500 seconds of re-
laxation, whereas the double RC and triple RC pair models yield
less error across the entire dataset time period. It is evident that
the higher order RC models can achieve a better fit to the relax-
ation voltage data than that of the single RC pair model. Fur-
thermore, comparing with the fitting results using a double RC
model, limited improvement in voltage fitting is observed when
a triple RC model is applied, which potentially indicates an over-
parameterization. Consequently, the double RC pair model is the
appropriate choice.
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Figure 5. FITTING OF VOLTAGE RELAXATION DATA.

3.2 Equivalent Circuit Parameters
The equivalent circuit parameters can then be character-

ized as functions of SOC, and temperature for the discharge and
charge direction as shown in [10]. The calculated internal resis-
tance Rs from Eq. (7), is shown in Fig. 6 with respect to SOC and
temperature for discharge and charge. The internal resistance Rs
has a minimal dependence on SOC over the range of 10 to 90
%, but depends strongly on temperature and current direction.
Therefore, the Rs parameter can be represented by an exponen-
tial function of the mean temperature Tm, for the discharging and

charging cases, as shown by,

Rs =

{
Rsd , I >= 0 (discharge)
Rsc , I < 0 (charge)

}
Rs∗ = Rs0∗exp(

Tre f Rs∗

Tm −Tshi f tRs∗
),

(10)

where ∗= d,c represents the value during discharging and charg-
ing respectively. The characterized Rs functions in Eq. (10) are
plotted along with the Rs values fit from the relaxation data using
Eq. (8), in Fig. 6. The values for Eq. (10) are shown in Tab. 1.

0 0.2 0.4 0.6 0.8 1
0.008

0.009

0.01

0.011

0.012

0.013

0.014
Discharge

SOC

R
s 

(O
hm

)
 

 

0 0.2 0.4 0.6 0.8 1
0.008

0.009

0.01

0.011

0.012

0.013

0.014
Charge

SOC

R
s 

(O
hm

)

 

 

15oC

15oC Fit

25oC

25oC Fit

35oC

35oC Fit

45oC

45oC Fit

Figure 6. CALCULATED Rs VERSUS PARAMETRIC FUNCTIONS DE-
SCRIBING THEIR DEPENDENCE ON TEMPERATURE AND SOC.

Table 1. PARAMETRIC Rs FUNCTION PARAMETERS.

Rs0d Rs0c Tre f Rsd Tre f Rsc Tshi f tRsd Tshi f tRsd

0.0048 0.0055 31.0494 22.2477 -15.3253 -11.5943

The parameters R1,R2 are characterized by including an
SOC dependency to the function in Eq. (10) used for the pa-
rameter Rs. The corresponding R1,R2 functions including SOC
and temperature dependence for discharge and charge are shown
in Eq. (19) and Eq. (20). The characterized functions are plotted
along with the R1,R2 parameter values in Fig. 11 and Fig. 12.

The parameters C1,C2 are represented by polynomial SOC
functions including temperature dependence. The C1,C2 func-
tions including SOC and temperature dependence for discharge
and charge are shown in Eq. (21) and Eq. (22). They are plotted
along with the C1,C2 parameter values in Fig. 13 and Fig. 14.

3.3 Thermal Model Parameterization
The experiment procedure used to identify the thermal

model parameters is the Urban Assault Cycle (UAC), scaled for
the A123 26650 cell, as explained in [32]. This cycle has been
presented in [34], for a 13.4 ton armored military vehicle. The
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cell is first charged to 100%SOC using a 1C CC-CV protocol un-
til the 50mA CV cutoff current is reached. It is then discharged
at 1C to about 50%SOC. The UAC current profile is then applied
to the cell under constant coolant flow, with the measured inlet
temperature Tf as shown in Fig. 7.
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Figure 7. UAC CURRENT AND INLET TEMPERATURE PROFILE.

The experiment is done by using a Bitrode FTV1-200/50/2-
60. The battery cell is placed in a designed flow chamber as
shown in Fig. 8, where a Pulse Width Modulated (PWM) fan is
mounted at the end to regulate the air flow rate around the cell.
This flow chamber is used to emulate cooling conditions of a cell
in a pack, where the flowrate is adjustable. Two T-type thermo-
couples are used for temperature measurement, one attached to
the aluminum casing of the cell to measure the surface tempera-
ture Ts, and the other near the battery inside the flow chamber to
measure the air flow temperature Tf . This thermal identification
experiment setup is also presented in [32].

The non-recursive least squares thermal model identification
method described in [22, 32] is implemented here by using the
heat generation from Eq. (4) as the input for the thermal model,
where VT is the measured voltage, VOCV is the modeled open cir-
cuit voltage, and I is the measured current. The objective is to
minimize the sum of the squared errors between the the mod-
eled surface temperature Ts, and the measured surface tempera-
ture Ts,data as shown by the cost function,

JT hermal = min
n

∑
i=1

(Ts(i)−Ts,data(i))2, (11)

where each instance is represented by i, starting from the first
surface temperature datapoint i= 1, up to the last datapoint i= n.

Figure 8. SINGLE CELL FLOW CHAMBER.

A parametric model in the form of [35],

z = θT ϕ, (12)

is used for the thermal model parameter least squares identifica-
tion [22], where the observation z and the independent regressors
ϕ should be measured. The parameters in θ are calculated by the
non-recursive least squares after the experimental data is taken
over a period of time t1, t2, ..., t by [35],

θ(t) = (ΦT (t)Φ(t))−1 Φ(t)Z(t),

Z(t) = [
z(t1)
m(t1)

z(t2)
m(t2)

...
z(t)
m(t)

]T

Φ(t) = [
ϕT (t1)
m(t1)

ϕT (t2)
m(t2)

...
ϕT (t)
m(t)

]T

m(t) =
√

1+ϕT (t)ϕ(t),

(13)

where m(t) is the normalization factor to enhance the robustness
of parameter identification as explained in [22]. For this purpose,
the parametric model for the linear model identification with ini-
tial battery surface temperature condition Ts,0 is first derived. The
thermal model in Eq. (5) becomes [22],

s2Ts − sTs,0 =
1

CcCsRc
Q+

1
CcCsRcRu

(Tf −Ts)

−(
Cc +Cs

CcCsRc
+

1
CsRu

)(sTs −Ts,0),

(14)

after a Laplace transformation and substitution of the unmeasur-
able Tc by the measurable Tf ,Ts. To avoid using the derivatives
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Table 2. THERMAL MODEL PARAMETERS.

Cs(J/K) Cc(J/K) Rc(K/W ) Ru(K/W )

4.5 62.7 1.94 3.19

of the measured signals, a proper parametric model must be ob-
tained. For this purpose, a second order filter is designed and
applied to the parametric model in Eq. (12),

z
Λ

= θT ϕ
Λ
, (15)

where the observation z and the independent regressors ϕ are
measured. The time constants of the filter can be determined
based on analyzing the persistent excitation condition for online
parameterization under typical drive cycles [22]. The parameter
vector θ is defined as,

z = s2Ts − sTs,0

ϕ =
[
Q Tf −Ts sTs −Ts,0

]T

θ =
[
α β γ

]T
,

(16)

where the parameters α,β,γ are,

α =
1

CcCsRc
, β =

1
CcCsRcRu

, γ =−(
CcCs

CcCsRc
+

1
CsRu

).

(17)

By applying the parameterization algorithm, α, β and γ can be
identified. It is clear that only three out of the four parameters
(Cc, Cs, Rc and Ru) can be determined by solving Eq. (17). Hence
Cs is pre-calculated based on the specific heat capacity and di-
mensions of the aluminum casing. With Cs known, Cc,Ru, and
Rc can be calculated by

Ru =
α
β
, Rc =

1
βCsCcRu

, Cc =
1

αCsRc
. (18)

The resulting identified parameters Cc,Rc and Ru from the ther-
mal identification scheme are shown in Tab. 2. The parameters
Cc,Cs,Rc should not change significantly within the lifetime of
the battery cell due to their physical properties. The parameter
Ru can change with respect to the flow around the cell as previ-
ously mentioned. In this case it is identified as a constant for a
steady flow condition.

4 MODEL VALIDATION AND RESULTS
The electro-thermal model is implemented in Simulink to

validate its performance under the UAC experiment. The SOC,

temperature, and current direction dependencies of the equiva-
lent circuit model parameters are included using lookup tables.
The current I and air inlet temperature Tf inputs are shown in
Fig. 7. The voltage and temperature responses of the electro-
thermal model are compared to the experimental measurements.
SOC is shown in Fig. 9 for this experiment. The SOC varies
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0.4

0.45
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0.55

S
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C

Time (min)

Figure 9. UAC SIMULATION SOC RESULTS.

between 52% and 42% under these conditions.
The measured surface temperature Ts,data and terminal volt-

age VT,data, are compared to the predicted surface temperature Ts
and voltage VT as shown in Fig. 10. The root mean square error
(RMSE) in predicted surface temperature is 0.32oC and voltage
is 19.3mV. The voltage RMSE is comparable with published re-
sults in [29], using a similar type of drive cycle profile for this
type of cell. The predicted core temperature Tc is also shown in
Fig. 10, which is 2.78oC higher than the predicted surface tem-
perature Ts under this cycle. A higher Tc prediction is presented
in [32], using a different heat generation under the same exper-
imental conditions. The heat generation for our case is smaller
than [32], causing slightly different identified parameters and a
lower Tc prediction. Further investigation is required to deter-
mine if the calculated heat generation Q and core temperature
Tc prediction are correct. Including a hysteresis model in the
electro-thermal model will also need to be investigated to deter-
mine if better results can be achieved.

5 CONCLUSION AND FUTURE WORK
In this study an equivalent circuit electrical model along

with a two state thermal model for an A123 26650 LiFePO4
cell were parameterized. The models were integrated into an
electro-thermal model in MATLAB/Simulink through a coupling
heat generation and temperature feedback. The resulting electro-
thermal model matches experimental measurements with mini-
mal error. This shows that the parameterization schemes used
are adequate for battery modeling.

Future work will involve modeling of hysteresis as in [25,
27, 28], which will then cause the heat generation to change due
to the new VOCV term. Measurement of the core temperature Tc
is also planned to validate the core temperature estimation of the
electro-thermal model. The cylindrical battery is to be drilled
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and a thermocouple will be installed in the core of the battery to
measure the core temperature as in [23].
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Appendix: Calculated Parameters and Functions

R1 =

{
R1d , I >= 0 (discharge)
R1c , I < 0 (charge)

}
R1∗ =(R10∗ +R11∗(SOC)+R12∗(SOC)2)

exp(
Tre f R1∗

Tm −Tshi f tR1∗
)

(19)
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Figure 11. CALCULATED R1 VERSUS PARAMETRIC FUNCTIONS
DESCRIBING THEIR DEPENDENCE ON TEMPERATURE AND SOC.

Table 3. PARAMETRIC R1 FUNCTION PARAMETERS.

R10d R10c R11d R11c R12d

7.1135e-4 0.0016 -4.3865e-4 -0.0032 2.3788e-4

R12c Tre f R1d Tre f R1c Tshi f tR1d Tshi f tR1c

0.0045 347.4707 159.2819 -79.5816 -41.4548

R2 =

{
R2d , I >= 0 (discharge)
R2c , I < 0 (charge)

}
R2∗ = (R20∗ +R21∗(SOC)+R22∗(SOC)2)exp(

Tre f R2∗
Tm

)
(20)

9 Copyright © 2012 by ASME



0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Discharge

SOC

R
2 

(O
hm

)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Charge

SOC

R
2 

(O
hm

)

 

 

15oC

15oC Fit

25oC

25oC Fit

35oC

35oC Fit

45oC

45oC Fit

Figure 12. CALCULATED R2 VERSUS PARAMETRIC FUNCTIONS
DESCRIBING THEIR DEPENDENCE ON TEMPERATURE AND SOC.

Table 4. PARAMETRIC R2 FUNCTION PARAMETERS.

R20d R20c R21d R21c

0.0288 0.0113 -0.073 -0.027

R22d R22c Tre f R2d Tre f R2c

0.0605 0.0339 16.6712 17.0224

C1 =

{
C1d , I >= 0 (discharge)
C1c , I < 0 (charge)

}
C1∗ =C10∗+C11∗(SOC)+C12∗(SOC)2

+(C13∗+C14∗(SOC)+C15∗(SOC)2)Tm

(21)
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Figure 13. CALCULATED C1 VERSUS PARAMETRIC FUNCTIONS
DESCRIBING THEIR DEPENDENCE ON TEMPERATURE AND SOC.

Table 5. PARAMETRIC C1 FUNCTION PARAMETERS.

C10d C10c C11d C11c

335.4518 523.215 3.1712e+3 6.4171e+3

C12d C12c C13d C13c

-1.3214e+3 -7.5555e+3 53.2138 50.7107

C14d C14c C15d C15c

-65.4786 -131.2298 44.3761 162.4688

C2 =

{
C2d , I >= 0 (discharge)
C2c , I < 0 (charge)

}
C2∗ =C20∗+C21∗(SOC)+C22∗(SOC)2

+(C23∗+C24∗(SOC)+C25∗(SOC)2)Tm

(22)
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Figure 14. CALCULATED C2 VERSUS PARAMETRIC FUNCTIONS
DESCRIBING THEIR DEPENDENCE ON TEMPERATURE AND SOC.

Table 6. PARAMETRIC C2 FUNCTION PARAMETERS.

C20d C20c C21d C21c

3.1887e+4 6.2449e+4 -1.1593e+5 -1.055e+5

C22d C22c C23d C23c

1.0493e+5 4.4432e+4 60.3114 198.9753

C24d C24c C25d C25c

1.0175e+4 7.5621e+3 -9.5924e+3 -6.9365e+3
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