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Abstract— In this paper an averaged electrochemical lithium-
ion battery model, presented and discussed in [2] and [3], is
identified and validated through experimental data by a 10 Ah
li-ion battery pack, during charge and discharge experiments.

The model is based on an approximation relationship be-
tween the averaged Butler-Volmer current and the average
solid concentration (in positive and negative electrode) at the
interface with the electrolyte phase.

The resulting cell-averaged solid diffusion model is then
discretized along the radial direction resulting in two sets (neg-
ative and positive electrode) of ordinary differential equations.
The behavior of the average concentration of the negative
electrode is then expressed algebraically with the average
positive electrode concentration through the cell SOC. This
last model simplification avoids unobservable conditions as
discussed in [3] and allow the application of an extended
Kalman Filter (EKF) from the measured cell voltage.

The battery State Of Charge (SOC) is then estimated using a
4th order Extended Kalman Filter (EKF) based on the averaged
model and the performance is shown experimentally in a 10 cell
37 V at 10 Ah Li-ion battery..

Keywords: Battery model, parameter identification, Kalman
filter, SOC estimation.

I. I NTRODUCTION

Lithium-ion batteries play an important role in the area
of hybrid vehicle design, scale-up, optimization and control
issues of Hybrid-Electrical Vehicles (HEV) as high-rate tran-
sient power source. When the batteries operate in a relative
limited range of state of charge, high efficiency, slow aging
and no damaging are expected. As consequence, the State Of
Charge (SOC) estimation and regulation is one of the most
important and challenging tasks for hybrid and electrical
vehicle control.

Several techniques have been proposed for SOC estima-
tion, like model based observers or black-box methods (as
an example using fuzzy-logic [10]). The accuracy reached
is about2% [8]. In order to improve this accuracy, SOC
estimation based on electrochemical [4], [14], [17] is investi-
gated. These models are generally preferred to the equivalent
circuit, or to other kinds of simplified models, thanks to their
ability to predict the physical cells limitations, which have
a relevant effect in the automotive application, where the
battery suffers very often the stress of very high transient
loads [12].
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Unfortunately, the high order of electrochemical model
and the complexity make a real-time on-board estimator
difficult to realize. As a consequence several approximations
are typically introduced [1], [7].

To this aim, the authors of the present work have proposed
in previous paper (see [2] and [3]) an average electrochemical
model suitable for a feasible solid concentration estimation.
The model is based on an approximated relationship between
(i) the Butler-Volmer current and the solid concentration at
the interface with the electrolyte and (ii) the battery current
and voltage. It shows a maximum error of0.3 mV on the
predicted cell voltage when it is compared with a full order
electrochemical model. Based on this simplified model a 4th
order extended Kalman filter (EKF) is also designed for SOC
estimation.

In this work, the averaged model parameters are identified
in order to match the model output with the experimental
data. The model is then validated using battery voltage and
current measurements during both charge and discharge ex-
periments. Finally the extended Kalman filter parameters are
adjusted in order to estimate the battery solid concentration
and, as consequence, the battery SOC.

The paper is organized as follows. Firstly, the electrochem-
ical model is briefly described. Then the experimental set-
up and the battery parameters identification procedure are
illustrated. The extended Kalman filter features and SOC
estimation are finally presented in section IV and V.

II. ELECTROCHEMICAL BATTERY MODEL

The battery is composed of three main parts: the negative
electrode, the separator and the positive electrode. Referring
to a battery with porous electrode material, each electrode
consists of a solid matrix inside an electrolyte solution, while
the separator is just the electrolyte solution. In particular, for
the Lithium-ion battery, the negative electrode, or anode,is
generally composed of carbon, while the positive electrode,
or cathode, is a metal oxide and the electrolyte is a lithium
salt in an organic solvent, such as LiPF6.

The separator is a solid or liquid solution with high
concentration of lithium ion. It conducts the ion but it
is an electronic insulator. At the negative electrode, the
solid active material particles of lithium (LixC6) diffuse to
the electrolyte-solid interface where the chemical reaction
occurs, transferring the lithium ions to the solution and the
electrons to the collector [12]. The produced lithium ions
flow through the solution to the positive electrode, where,
at the interface with solid material, they react again with



Fig. 1. Schematic macroscopic (x-direction) cell model with coupled
microscopic (r-direction) solid diffusion model.

electron coming from positive collector and insert into the
metal oxide solid particles.

It’s generally accepted that a microscopic description of
the battery is intractable, due to the complexity of the
phenomena at the interfaces [15]. So, in order to mathemat-
ically model the battery, both macroscopic and microscopic
modeling approximations have to be considered.

The equations used in this paper describe the battery
system with four quantities, i.e. solid and electrolyte con-
centrations (cs, ce) and solid and electrolyte potentials (φs,
φe)( see [5], [12]).
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where the overpotentialη is obtained as

η = φs − φe − U(cse) (6)

where U(cse) is the open circuit potential which is an
empirical correlation function of the solid concentrations and
the coefficientj0 calculated as

j0 = k0(ce)
αa(cs,max − cse)

αa(cse)
αc . (7)

The cell potential is computed as

V = φs(x = L) − φs(x = 0) −
Rf

A
I (8)

whereRf is the film resistance on the electrodes surface and
A is the collectors surface. More details on the model and
its parameters can be found in [2], [12], [16].

A model simplification can be achieved by neglecting
the solid concentration distribution along the electrode and
considering the material diffusion inside a representative
solid material particle for each electrode. This simplification
introduces an average value for the solid concentration which
can be related with the definition of battery state of charge.
Furthermore, by assuming high concentration of electrolyte
material in the solution, the electrolyte concentrationce can
be considered constant and its average value can be used in
the model.

Although these simplifications result in a heavy loss of
information, they can be useful in control and estimation
applications as we demonstrate next. In accordance with
the mean solid concentration, the spatial dependence of the
Butler-Volmer current is ignored and a constant valuej̄Li is
considered which satisfies the spacial integral (for the anode
or the cathode)

∫ δn

0

jLi(x)dx =
I

A
= j̄Li

n δn (9)

whereδn is the anode thickness. This averaging procedure
is equivalent to considering a representative solid material
particle somewhere along the anode and the cathode [3].

The partial differential equation (4), describes the solid
phase concentration along the radius of active particle, but
the macroscopic model requires only the concentration at the
electrolyte interface.

By using the finite difference method for the spatial
variabler, it is possible to express the spherical PDE into
a set of ordinary differential equations (ODE), dividing the
sphere radius inMr−1 slices, each of size∆r = Rs

Mr−1 and
rewriting boundary conditions [11]. The new system presents
Mr − 1 statescs = (cs1

, cs2
, ....csMr−1

)T , representing
radially distributed concentrations at finite element node
points1, ..., Mr − 1

ċs = Acs + Bj̄Li. (10)

whereA is a constant tri-diagonal matrix, function of the
diffusion coefficientDs. The output of the system is the
value of the solid concentration at the sphere radius, that
can be rewritten as

c̄se = csMr−1
− Dj̄Li. (11)

whereD is function of diffusion coefficientDs and active
surface areaas. Two sets of ODEs, one for the anode and one
for the cathode are then obtained. The positive and negative
electrode dynamical systems differ at the constant values and
at the input sign.

The initial values of̄cse when the battery is fully charged
is defined asc̄100%

se,x and when fully discharged as̄c0%
se,x,



with x = p, n for the positive and negative electrode. It is
convenient to define the normalized concentration, also know
as stoichiometry,θx = c̄se,x/cse,max,x, with x = p, n for the
positive and negative electrode.

The battery voltage (8), using (6) and using the average
values at the anode and the cathode, can be rewritten as

V (t) = (η̄p − η̄n) +
(

φ̄e,p − φ̄e,n

)

+ (Up(θp) − Un(θn)) −
Rf

A
I.

(12)

Using the microscopic current average values and imposing
the boundary conditions and the continuity at the interfaces,
a solution of equations (1) - (4) can be found. The results can
be found in [2] and [3] and are not reported here for brevity.
Further simplification is however, required to arrive to a
computationally-tractable and observable model as discussed
below.

Using (5) it is possible to express the overpotentials
difference as function of average current densities and solid
concentrations as follows
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The approximate solution for the electrolyte potential at
the interface with the collectors leads to

φ̄e,p−φ̄e,n = φe(L)−φe(0) = −
I

2Akeff
(δn + 2δsep + δp) .

(15)
Finally, the battery voltage (12) can be rewritten as a

function of current demand and average solid concentration
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whereKr = 1
2Akeff (δn + 2δsep + δp) + Rf is a term that

takes into account both internal and collector film resistances.

III. M ODEL PARAMETER IDENTIFICATION AND

VALIDATION

The battery adopted for the experiments is a Powerizer -
PolymerLi − Ion Battery Pack, composed of 10 cells. Its
nominal voltage is 37 V at 10 Ah. The battery has been
charged and discharged using the electronic load Prodigit
3260, coupled with a DC generator. The data has been
collected using an ADC of the National Instrument, able
to sample multiple channels up to 1 MHz with 16 bit of
precision.

In order to acquire experimental data to identify the
model parameters and test the SOC estimator, several charges
and discharges of the battery have been performed and the
coupled voltage and current data sets have been collected.

Then an identification procedure, based on gradient free
function minimization algorithm, has been designed in order
to estimate the parameters values that best fit the output
of the averaged model versus all the collected data. The
parameters to identify are the maximum positive and negative
solid concentrationcs,max,p and cs,max,n, the positive and
negative solid phase diffusion coefficientDs,p and Ds,n,
the positive and negative active surface area per electrode
as,p and as,n, the electrode surfaceA, the total cell film
resistanceKr and the current coefficientk0 for a total of
nine parameters.

Figures 2 reports the performance of the averaged model
versus the battery output during an identification test. The
experiment corresponds to a power request profile, simulat-
ing a variable load connected to the battery. It shows a good
battery voltage prediction, with a maximum absolute error
of 0.2 V. The bottom subplot of Figure 2 shows the voltage
error. Even if the error exhibits a high value during transients,
a good performance during constant current operation can be
noticed.
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Fig. 2. Averaged model versus experimental data: requestedcurrent;
measured (solid-blue line) and simulated (dotted-red line)battery voltage;
voltage error.

Finally, Tables I and II show the battery constants and the
identified parameters, respectively. Detail of the identification
process and the identification results are discussed in [13].

IV. K ALMAN FILTER STATE OF CHARGE ESTIMATION

The physical quantity related to the battery state of charge
is the solid concentration at the electrodes. A Kalman Filter
for the on-line SOC estimation based on the electrochemical
model is presented in [2], where a preliminary observability
analysis is also performed.



Parameter Negative electrode Separator Positive electrode

Thickness (cm) δn = 50 × 10−4 δsep = 25.4 × 10−4 δp = 36.4 × 10−4

Particle radiusRs (cm) 1 × 10−4 - 1 × 10−4

Active material volume fractionεs 0.580 - 0.500
Electrolyte phase volume fraction (porosity)εe 0.332 0.5 0.330
Conductivity of solid active material
σ (Ω−1 cm−1) 1 - 0.1

Effective conductivity of solid active material σeff = εsσ - σeff = εsσ

Transference numbert0+ 0.363 0.363 0.363
Electrolyte phase ionic conductivity
κ (Ω−1 cm−1) κ = 0.0158ce exp(0.85c1.4

e ) κ = 0.0158ce exp(0.85c1.4
e ) κ = 0.0158ce exp(0.85c1.4

e )

Effective electrolyte phase ionic conductivity κeff = (εe)1.5κ κeff = (εe)1.5κ κeff = (εe)1.5κ

Effective electrolyte phase diffusion conductivity κ
eff
D

= 2RTκeff

F
(t0+ − 1) κ

eff
D

= 2RTκeff

F
(t0+ − 1) κ

eff
D

= 2RTκeff

F
(t0+ − 1)

Electrolyte phase diffusion coefficient
De (cm2 s−1) 2.6 × 10−6 2.6 × 10−6 2.6 × 10−6

Effective electrolyte phase diffusion coefficient D
eff
e = (εe)1.5De D

eff
e = (εe)1.5De D

eff
e = (εe)1.5De

Change transfers coefficientsαa, αc 0.5,0.5 - 0.5, 0.5

TABLE I

BATTERY CONSTANT VALUES.

Specifically, the average dynamical system describes the
diffusion effects into two solid material particles, one for
the cathode and one for the anode, and allows to compute
the solid concentration at the spheres radius, which repre-
sents an average value of the solid concentration throughout
the electrodes. However the cell voltage (33) depends on
(Up(θp) − Un(θn)) making the difference of the open cir-
cuit voltage, but not the individual electrode concentrations,
observable. Indeed, it was shown in [3] that the system that
includes both positive and negative electrode concentration
states is weakly observable.

This limitation can be mitigated by establishing a re-
lation between the anode and the cathode average solid
concentrations which can be used for the estimation of
the negative electrode concentration based on the positive
electrode, which can now be observable from the output cell
voltage [2].

First, let us define the state of charge of the battery, with a
good approximation, as linearly varying withθ between the
two reference values at0% and100%

SOC(t) =
θx − θ0%

x

θ100%
x − θ0%

x

. (17)

with x = p, n for the positive and negative electrode.
Finally, equation (17) allows the computation of negative

stoichiometry from positive using (17) as

θn =
(

θp − θ0%
p

)

[

θ100%
n − θ0%

n

θ100%
p − θ0%

p

]

− θ0%
n (18)

Hence, introducing the state vector x =
(c̄s,p1, c̄s,p2, ....., c̄s,p(Mr−1))

T , the dynamical system
is

ẋ = Apx(t) + Bpu(t), (19)

where the input is the average value of the Butler-Volmer
current

u = j̄Li
p (20)

and the output is the measurement of the battery voltage

y = V (x, u) (21)

function of solid concentration and battery current. The
matricesAp and Bp are obtained from (10). For a linear
state-space formulation, the linearized battery voltage results
in an output matrixC = ∂V/∂x which is a row matrix with
zeros in its firstMr − 2 elements and the last non-zero term
equal to

∂V

∂c̄s,p(Mr−1)
=

∂Up

∂c̄s,p(Mr−1)
−

∂Un

∂c̄se,n

∂c̄se,n

∂c̄s,p(Mr−1)
. (22)

This guarantees a strongly local observability∀c̄se,p 6= 0 [2],
[6], [9].

The Kalman filter can now be designed, according to

˙̂x = Apx̂ + Bu + Ke(y − ŷ)

ŷ = V (x̂, u)
(23)

wherex̂ andŷ are respectively the estimate state and output,
V is the output nonlinear function in (16),Ap, Bp are the
matrices describing the dynamical system introduced by (19),
C defined using (22) andKe is the Kalman gain, obtained
as follows

Ke = PCR−1
u (24)

whereP is the solution of the Riccati equation

Ṗ = ApP + PAT
p − PCR−1

u CT P + Rx

P (0) = P0,
(25)

and Rx and Ru are weight matrices appropriately tuned in
order to minimize the quadratic error on battery voltage. A
Matlab optimization procedure returnedRx = 10× I (where
I is the identity matrix) andRu = 12.
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Fig. 3. Experiment 1: current and voltage experimental dataduring a
battery discharge. The battery voltage measurement (dotted-green line) is
compared with the output filter estimation (solid-blue line).
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Fig. 4. Experiment 1: solid concentration and SOC estimation.

V. EXPERIMENTAL RESULTS

In this section the simulation results compared to the
experimental data are reported, in order to demonstrate
the performance of the Kalman filter. The experiments are
similar to the ones used validate the model.

Figures 3 - 6 show the filter performance during two
selected experiments and its very fast recovery of the voltage
error thanks to feedback regulation. In the first, starting
from the battery almost fully charged, a variable load is
applied (see the first plot of Figure 3) and the battery is
discharged for about1000 s. The output voltage is correctly
estimated, as it is possible to note in the second plot of
Figure 3, where it is compared with the experimental data.
The estimated SOC is shown in Figure 4 to decrease by10%,
consistently with the discharge rates (mostly0.3 C) and the
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Fig. 5. Experiment 2: current and voltage experimental dataduring a full
discharge. The battery voltage measurement (dotted-greenline) is compared
with the filter estimation (solid-blue line).
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Fig. 6. Experiment 2: solid concentration and SOC estimation.

discharge duration (1000 s). The second set of experiments
is a nearly complete battery discharge with constant current
load (about7.5 A), starting from 100% SOC. Again the
battery voltage is optimally estimated (see the comparison
with the experimental data shown in the second plot of Figure
5) and SOC estimation (shown in Figure 6), which almost
reaches the minimum value. The SOC estimation exhibits
the expected behavior, in coherence with simple coloumb
counting. The voltage error is almost zero again thanks to
the great error recovery property of the Kalman filter.

Finally a robustness analysis has been performed on the
Kalman filter to verify the robustness of the observer to
variation of the model parameters. The results of this analysis
are listed in Table III showing excellent performance in terms
of robustness and reliability with respect to the variationof



Name Symbol and Value

Max negative solid concentration
(mol cm−3) cs,max,p = 1.119 × 10−2

Max positive solid concentration
(mol cm−3) cs,max,p = 4.568 × 10−2

Average solid concentration
(mol cm−3) c̄e = 7.556 × 10−4

Solid phase neg. diffusion coefficient
(cm2 s−1) Ds,n = 2.32 × 10−12

Solid phase pos. diffusion coefficient
(cm2 s−1) Ds,p = 3.95 × 10−12

Negative active surface area per electrode
(cm2cm−3) as,n = 1.71 × 104

Positive active surface area per electrode
(cm2cm−3) as,p = 2.07 × 104

Electrode plate Area
cm2 A = 10166
Total resistance (internal and external)
Ωcm2 Kr = 258.456
Current density coefficient k0 = 1.124 × 103

TABLE II

IDENTIFIED PARAMETERS.

one or more model parameters. For brevity the Table III
shows just the parameters that lead to a significant SOC
estimation variation.

VI. CONCLUSION

An isothermal electrochemical model of the Lithium-ion
battery was used to derive an averaged model coupling
the average microscopic solid material concentration with
the average values of the chemical potentials, electrolyte
concentration and microscopic current density. The average
model was identified using a10 Ah battery pack exper-
imental data. Finally, the SOC estimation was performed
using an EKF, showing excellent results in term of voltage
convergence indicating good and fast battery SOC estimation
and robustness to widely battery parameters variations.
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−10% ē = 2.48 × 10−4,s = 2.97 × 10−5
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