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Abstract— In this paper an averaged electrochemical lithium- Unfortunately, the high order of electrochemical model
ion battery model, presented and discussed in [2] and [3], is and the complexity make a real-time on-board estimator

identified and validated through experimental data by a 10 Ah - igicyt to realize. As a consequence several approximatio
li-ion battery pack, during charge and discharge experimets. . .
are typically introduced [1], [7].

The model is based on an approximation relationship be- R
tween the averaged Butler-Volmer current and the average 10 this aim, the authors of the present work have proposed

solid concentration (in positive and negative electrode) tathe  in previous paper (see [2] and [3]) an average electroct@mic
interface with the electrolyte phase. . model suitable for a feasible solid concentration estiomati
The resulting cell-averaged solid diffusion model is then The modelis based on an approximated relationship between

discretized along the radial direction resulting in two ses (neg- . . . .
ative and positive electrode) of ordinary differential equations. (i) the Butler-Volmer current and the solid concentratidn a

The behavior of the average concentration of the negative the interface with the electrolyte and (ii) the battery eutr
electrode is then expressed algebraically with the average and voltage. It shows a maximum error @8 mV on the
positive electrode concentration through the cell SOC. T predicted cell voltage when it is compared with a full order
last model simplification avoids unobservable conditions &  glectrochemical model. Based on this simplified model a 4th

ﬂgﬁ#éﬁeﬁmg ([E]Klg)n?ro?rlki\rl]ve tnqzagﬁggaggpvﬁagg extended order extended Kalman filter (EKF) is also designed for SOC

The battery State Of Charge (SOC) is then estimated using a ©€Stimation.
4th order Extended Kalman Filter (EKF) based on the averaged In this work, the averaged model parameters are identified
model and the performance is shown experimentally ina 10 cel in order to match the model output with the experimental
37 v at 10 Ah Liion batery.. data. The model is then validated using battery voltage and

Keywords: Battery model, parameter identification, Kalman

filter, SOC estimation. current measurements during both charge and discharge ex-

periments. Finally the extended Kalman filter parametegs ar
adjusted in order to estimate the battery solid concentrati
and, as consequence, the battery SOC.

Lithium-ion batteries play an important role in the area The paper is organized as follows. Firstly, the electrochem
of hybrid vehicle design, scale-up, optimization and cointr ical model is briefly described. Then the experimental set-
issues of Hybrid-Electrical Vehicles (HEV) as high-rateny  up and the battery parameters identification procedure are
sient power source. When the batteries operate in a relatilgistrated. The extended Kalman filter features and SOC
limited range of state of charge, high efficiency, slow agingstimation are finally presented in section IV and V.
and no damaging are expected. As consequence, the State Of
Charge (SOC) estimation and regulation is one of the most [I. ELECTROCHEMICAL BATTERY MODEL
important and challenging tasks for hybrid and electrical
vehicle control.

Several techniques have been proposed for SOC esti

I. INTRODUCTION

The battery is composed of three main parts: the negative
rT%lgctrode, the separator and the positive electrode. Rejer

tion, like model based observers or black-box methods (ég a _battery With porogs_elgctrode material, each_ el_ectrode
an example using fuzzy-logic [10]). The accuracy reache nsists of a solid matrix inside an electrolyte solutiohijle

is about2% [8]. In order to improve this accuracy, socthe sgpgratqr Is just the electrolytg solution. In par&'t;tﬁpr
estimation based on electrochemical [4], [14], [17] is stie the Lithium-ion battery, the negative eIectrod(_a,_ or anasle,
gated. These models are generally preferred to the eqntvakgenerally composed of C"i“bO”’ while the posmve_ ele(_:tr(_)de
circuit, or to other kinds of simplified models, thanks toithe or cz_;\thode, IS a_metal oxide and the_ electrolyte is a lithium
ability to predict the physical cells limitations, whichvea salt in an organic _solvent, TSUCh as L_H?F . _ _

a relevant effect in the automotive application, where the The separator is a solid or liquid solution with high

battery suffers very often the stress of very high transier&oncentraﬂon ,Of .I|th|um lon. It conduct_s the ion but it
loads [12]. is an electronic insulator. At the negative electrode, the

solid active material particles of lithium (LCg) diffuse to
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The cell potential is computed as

I B,
VZQSS(:E:L)_QSS("E:O)_I (8)

whereR; is the film resistance on the electrodes surface and
]l A is the collectors surface. More details on the model and

its parameters can be found in [2], [12], [16].

A model simplification can be achieved by neglecting

tlf the solid concentration distribution along the electrodd a

considering the material diffusion inside a represengativ
d solid material particle for each electrode. This simplifica
! introduces an average value for the solid concentratioghvhi
|-,1CF LiCoO2 ¥ can be related with the definition of battery state of charge.
! c,(xrt) Furthermore, by assuming high concentration of electeolyt
material in the solution, the electrolyte concentratiprcan
be considered constant and its average value can be used in
the model.

Although these simplifications result in a heavy loss of
information, they can be useful in control and estimation
Fig. 1.  Schematic macroscopia-firection) cell model with coupled applications as we demonstrate next. In accordance with
microscopic ¢-direction) solid diffusion model. the mean solid concentration, the spatial dependence of the

Butler-Volmer current is ignored and a constant vajtiéis
considered which satisfies the spacial integral (for thedano
electron coming from positive collector and insert into theor the cathode)
metal oxide solid particles. 5 7

It's generally accepted that a microscopic description of / jH (x)de = = = jL%5, 9)
the battery is intractable, due to the complexity of the 0 A
phenomena at the interfaces [15]. So, in order to mathemathered,, is the anode thickness. This averaging procedure
ically model the battery, both macroscopic and microscopis equivalent to considering a representative solid maiteri
modeling approximations have to be considered. particle somewhere along the anode and the cathode [3].

The equations used in this paper describe the batteryThe partial differential equation (4), describes the solid
system with four quantities, i.e. solid and electrolyte -conphase concentration along the radius of active particlé, bu
centrations 4, c.) and solid and electrolyte potentialgé,( the macroscopic model requires only the concentrationeat th
oe)( see [5], [12]). electrolyte interface.

P . - ' By using the finite difference method for the spatial
— (neffquse + n;ffvmln ce> = 5l (1) variabler, it is possible to express the spherical PDE into
Ox a set of ordinary differential equations (ODE), dividingeth

I Li 5 sphere radius i/, — 1 slices, each of siz&, = % and
oz (U ms) =J @) rewriting boundary conditions [11]. The new system present
M, — 1 statescs = (cs;,Csps---Cspr )., representing
Oe.c — — 1—1¢0 .. . L . royl
eV, (D:ff Vmce) 4k (3) radially distributed concentrations at finite element node
ot F points1,..., M, — 1
aacts = §>r (Dsecs) (4) éS = ACS + Ble (10)

where A is a constant tri-diagonal matrix, function of the
diffusion coefficientD,. The output of the system is the
value of the solid concentration at the sphere radius, that
(5)  can be rewritten as

coupled with the Butler-Volmer current density equation

L (x) = asjo | ex ZEA exp | — ok
J = asjo p RT n p RT n

where the overpotentiaj is obtained as

Ese - CsMr,l - DjLz' (11)
whereD is function of diffusion coefficientD, and active

1= ¢s = ¢e = UlCse) (6) surface area,. Two sets of ODEs, one for the anode and one
where U(c,.) is the open circuit potential which is an for the cathode are then obtain_ed. The positive and negative
empirical correlation function of the solid concentragamd ~ ©l€ctrode dynamical systems differ at the constant valoés a
the coefficientj, calculated as at the input sign. _

The initial values ofz,. when the battery is fully charged
Jo = ko(ce)® (Csmaz — Cse)™ (Cse)™. (7) is defined ascl?%% and when fully discharged ag?”

se,x se,



with z = p,n for the positive and negative electrode. It isThen an identification procedure, based on gradient free
convenient to define the normalized concentration, alsevknafunction minimization algorithm, has been designed in orde
as stoichiometry, = Cse /Cse,max.z» With x = p,n for the to estimate the parameters values that best fit the output
positive and negative electrode. of the averaged model versus all the collected data. The
The battery voltage (8), using (6) and using the averagsarameters to identify are the maximum positive and negativ
values at the anode and the cathode, can be rewritten assolid concentratiorts maz,p and csmaz,n, the positive and
V() = (p — 7in) + (Bep — Gemn) tnhegativeT _solid phase Qiffusiop coefficiels , and D,
R, (12) e positive and negative active surface area per e!ectrode
+ (Up(0p) — Un(6y)) — 7 . asp andas ,, the electrode surfacd, the total cell film
resistancek,. and the current coefficient, for a total of
Using the microscopic current average values and imposigne parameters.
the bOUndary conditions and the Continuity at the intel’f‘ace Figures 2 reports the performance of the averaged model
a solution of equations (1) - (4) can be found. The results cajgrsus the battery output during an identification test. The
be found in [2] and [3] and are not reported here for brevityexperiment corresponds to a power request profile, simulat-
Further simplification is however, required to arrive to gng a variable load connected to the battery. It shows a good
computationally-tractable and observable model as dsstlis pattery voltage prediction, with a maximum absolute error
below. of 0.2 V. The bottom subplot of Figure 2 shows the voltage
Using (5) it is possible to express the overpotentialgrror. Even if the error exhibits a high value during trantse

difference as function of average current densities and soly good performance during constant current operation can be
concentrations as follows noticed.

&+ /2 +1
RT P D (13)

Np — N = In _ ‘ ‘
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]
where . o 3
jéz d 5 ‘71[;1 (14) 00 260 460 660 860 10‘00 1200
5 = - an = —. . . : T T
P 2as]0p " 2as.]0n % ’ Battery measurement
The approximate solution for the electrolyte potential a Aereges Mot o
the interface with the collectors leads to 375 R ]
_ _ I =
(be,p_(be,n = ¢6(L)_¢e(0) = _W (571 + 25sep + 5[)) . év 37t P b ]
(15) S 37.1
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IIl. M ODEL PARAMETER IDENTIFICATION AND

VALIDATION Fig. 2. Averaged model versus experimental data: requestecent;
. . . measured (solid-blue line) and simulated (dotted-red)tiattery voltage;
The battery adopted for the experiments is a Powerizervoltage error.

Polymer Li — Ion Battery Pack, composed of 10 cells. Its
nominal voltage is 37 V at 10 Ah. The battery has been Finally, Tables | and Il show the battery constants and the
charged and discharged using the electronic load Prodigifentified parameters, respectively. Detail of the idecaifon

3260, coupled with a DC generator. The data has begjiocess and the identification results are discussed in [13]
collected using an ADC of the National Instrument, able

to sample multiple channels up to 1 MHz with 16 bit of V. KALMAN FILTER STATE OF CHARGE ESTIMATION
precision. The physical quantity related to the battery state of charge

In order to acquire experimental data to identify thds the solid concentration at the electrodes. A Kalman Filte
model parameters and test the SOC estimator, several sharfgr the on-line SOC estimation based on the electrochemical
and discharges of the battery have been performed and tm@del is presented in [2], where a preliminary observapilit
coupled voltage and current data sets have been collectagialysis is also performed.



[ Parameter | Negative electrode | Separator | Positive electrode
Thickness ¢m) dn =50 x 10~ Ssep = 25.4 x 1077 5p =36.4x 1072
Particle radiusRs (cm) 1x1072 - 1x107%

Active material volume fractior 0.580 - 0.500
Electrolyte phase volume fraction (porosity) 0.332 0.5 0.330
Conductivity of solid active material

o Q1 em™1) 1 0.1
Effective conductivity of solid active material | o¢77 = ¢es0 - ol =¢s0
Transference numbe‘tfjr 0.363 0.363 0.363

Electrolyte phase ionic conductivity
k(Q1 em™1)

k& = 0.0158¢. exp(0.85ct*)

K = 0.0158ce exp(0.85ck4)

% = 0.0158ce exp(0.85¢k4)

Effective electrolyte phase ionic conductivity

Heff — (5e)1'5ﬁ

Heff — (55)1'55

Heff — (5e)1'5ﬁ

Effective electrolyte phase diffusion conductivity x%// = M(ti -1 | &= M(ti -1 | &7 = M(ti -1)
Electrolyte phase diffusion coefficient

De (em? s71) 2.6 x 1076 2.6 x 10~ 2.6 x 1076

Effective electrolyte phase diffusion coefficient| D7 = (¢.)1-°D, DT = (¢,)15D, DT = (¢,)15D,
Change transfers coefficients, , a.c 0.5,0.5 - 0.5, 0.5

TABLE |
BATTERY CONSTANT VALUES.

Specifically, the average dynamical system describes tlaad the output is the measurement of the battery voltage
diffusion effects into two solid material particles, oner fo
the cathode and one for the anode, and allows to compute
the solid concentration at the spheres radius, which repre-
sents an average value of the solid concentration throughdunction of solid concentration and battery current. The
the electrodes. However the cell voltage (33) depends onatricesA, and B, are obtained from (10). For a linear
(U,(0,) — U, (6,)) making the difference of the open cir- state-space formulation, the linearized battery voltapeilts
cuit voltage, but not the individual electrode concentragi, in an output matrixC' = 9V/dz which is a row matrix with
observable. Indeed, it was shown in [3] that the system thaeros in its firstd/,. — 2 elements and the last non-zero term
includes both positive and negative electrode conceatrati equal to
states is weakly observable.

This limitation can be mitigated by establishing a re- ov.___ _oU,  9U,
lation between the anode and the cathode average soliddCs par,—1)  OCsp(r,—1)  OCsen OCs p(ri,—1)
concentrations which can be used for the estimation of
the negative electrode concentration based on the positiV8is guarantees a strongly local observabiity., 7 0 [2],
electrode, which can now be observable from the output cdffl: [9]-
voltage [2]. The Kalman filter can now be designed, according to

First, let us define the state of charge of the battery, with a
good approximation, as linearly varying withbetween the

y=V(x,u) (21)

aése,n

(22)

&= Api + Bu+ Ko(y — )

two reference values @% and 100% 9 =V(&,u) @3)
0, — %% . . . .
SOC(t) = GI00% — gu” (17) wherez andy are respectively the estimate state and output,

V is the output nonlinear function in (16},, B, are the
with = = p, n for the positive and negative electrode. matrices describing the dynamical system introduced by; (19
Finally, equation (17) allows the computation of negativ&’ defined using (22) and. is the Kalman gain, obtained

stoichiometry from positive using (17) as as follows

oo [6100% _ go% oo K. = PCR;" (24)

9, — (ep — 60 ) g |~ (19) | | o |
P P where P is the solution of the Riccati equation

Hence, introducing the state vectorx = , - T
(Cs,p15Cs,p2y +vens Co p(M. ,1))T, the dynamical system P =A,P+PA, —PCR,C"P+R,
| P P sPAM oy (25)
is P(0) = Py,

@ = Ayz(t) + Byu(t), (19)

_ _ and R, and R,, are weight matrices appropriately tuned in
where the input is the average value of the Butler-Volmesrder to minimize the quadratic error on battery voltage. A
current Matlab optimization procedure returnét}. = 10 x I (where

jLi I is the identity matrix) andR,, = 12.

u:]p

(20)
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discharge. The battery voltage measurement (dotted-dire®ns compared
with the filter estimation (solid-blue line).

battery discharge. The battery voltage measurement (Hgteen line) is
compared with the output filter estimation (solid-blue Jine

P
p

% 0.7 o
= K=l
£ oesf 065 1 g 0%
g 0.6 g 06
§ 06F 055 1 S 055
) o
g | o5 | 4 05
a 0% S g 045
2 osf / 1 E 04
£ g€ 035
5 04 \ \ \ \ \ \ \ \ \ s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
z 100 200 300 400 500 600 700 800 900 1000 2 500 1000 1500 2000 2500 3000 3500 4000
T T T T T T T T T 1 T T T T T T T T
NN |
o N R g 038
g osf 1 5
6 <
L | O
5 0.7 0.8 5 0.6
bS] L ] Q
g 061 g6 g
(7] » 0.4
05f 0o 2 4 |
04 R 02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700 800 900 1000 500 1000 1500 2000 2500 3000 3500 4000
Time [s] Time [s]
Fig. 4. Experiment 1: solid concentration and SOC estimatio Fig. 6. Experiment 2: solid concentration and SOC estimatio

V. EXPERIMENTAL RESULTS discharge duration1(00 s). The second set of experiments

In this section the simulation results compared to thés a nearly complete battery discharge with constant ctirren
experimental data are reported, in order to demonstraead (about7.5 A), starting from100% SOC. Again the
the performance of the Kalman filter. The experiments areattery voltage is optimally estimated (see the comparison
similar to the ones used validate the model. with the experimental data shown in the second plot of Figure

Figures 3 - 6 show the filter performance during twdb) and SOC estimation (shown in Figure 6), which almost
selected experiments and its very fast recovery of the geltareaches the minimum value. The SOC estimation exhibits
error thanks to feedback regulation. In the first, startinghe expected behavior, in coherence with simple coloumb
from the battery almost fully charged, a variable load igounting. The voltage error is almost zero again thanks to
applied (see the first plot of Figure 3) and the battery i§he great error recovery property of the Kalman filter.
discharged for aboutt000 s. The output voltage is correctly  Finally a robustness analysis has been performed on the
estimated, as it is possible to note in the second plot &alman filter to verify the robustness of the observer to
Figure 3, where it is compared with the experimental dataariation of the model parameters. The results of this aialy
The estimated SOC is shown in Figure 4 to decreasiby, are listed in Table 11l showing excellent performance inrter
consistently with the discharge rates (mogtl$ C) and the of robustness and reliability with respect to the variatidn



Name | Symbol and Value | [ Parameter | Variation | Absolute error mean and std |
Max negative solid concentration CSmaz,p —20% e=11x10"35s=3.6x 1073
(mol cm—3) Cs,maz,p = 1.119 x 1072 -10% €=4.76x10"%s=1.7x 1073
Max positive solid concentration +10% €=425x10"%s=1.6x10"3
(mol cm—3) Cs,maz,p = 4.568 x 1072 +20% €=28.10x10"3,5s=3.1x10"3
Average solid concentration CSmaz,n —20% £=21x103s=18x10"1%
(mol cm—3) e = 7.556 x 10~4 —10% | €=19.44 x 104, =8.02 x 1072
Solid phase neg. diffusion coefficient +10% | e=7.73x10"%,5s =6.57 x 107°
(em? s 1) D =232 x 10712 +20% €=14x10"3s=12x10"%
Solid phase pos. diffusion coefficient Ds.n —20% €=733x10°s=173x10"%
(em? s71) D, p =3.95 x 10712 —10% | e=3.54x10"5,s=28.71 x 107>
Negative active surface area per electrode +10% €=2333%x10"5s=88x10""°
(em2em—3) as,n = 1.71 x 10% +20% €=16.5x10"%5=1.76 x 10~*
Positive active surface area per electrode as,p —20% €=558x10"%s=6.7x10"°
(em2em—3) as,p = 2.07 x 10* —10% | €=2.48 x 10~%,5 = 2.97 x 1075
Electrode plate Area +10% €=203x10"%5=243x10"°
cm? A = 10166 +20% | €=3.72x 10745 =4.47 x 1075
Total resistance (internal and external) Qs n —20% e=212x103s=18x10"1%
Qem? K, = 258.456 —10% | €=19.44 x 10~%,5 = 8.03 x 10~
Current density coefficient ko = 1.124 x 103 +10% e=7.73x10"%,s=6.57 x 10~°
5 — -3 ¢ — —4
TABLE Il +20% e=141x10"°s=1.2x10
A —20% €=357Tx10"3,5=3.19x 10~ %
IDENTIFIED PARAMETERS —10% 6=1.6x10"3,5 = 1.42 x 10—4
+10% €=13x10"3%s=1.16 x 10~*
+20% | €=2.39x1073,s=214x 10~*
Aandas,, | —20% | é=215x10"2,s=4.66 x 10~3
. _ 5 _ —2 . _ -3
one or more model parameters. For brevity the Table IlI +}8§’ ‘;_ 1:1)) i 18,2'2_ ;‘1151’ i 18,3
. N ags 0 = 1. S = 4.
shows just the parameters that lead to a significant SOC 420% | e=2.87x10-2,s = 4.31 x 10-3

estimation variation.

An isothermal electrochemical model of the Lithium-ion

VI. CONCLUSION

battery was used to derive an averaged model couplin

the average microscopic solid material concentration wit

9

the average values of the chemical potentials, electrolyte
concentration and microscopic current density. The aweragio]
model was identified using a0 Ah battery pack exper-
imental data. Finally, the SOC estimation was performedy;
using an EKF, showing excellent results in term of voltage

convergence indicating good and fast battery SOC estimati&'?]
and robustness to widely battery parameters variations.
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