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Abstract

In this paper application of recursive least squares with multiple
forgetting factors is explained for online estimation of Heavy Duty
Vehicle mass and road grade. The test data is obtained from high-
way experiments with a Freightliner truck. The experimental setup
and particular concerns in the experiments are explained in detail.
This data is used to validate the longitudinal dynamics model of the
truck. Then two distinct driving cycles are used to investigate the
performance of the mass and grade estimation scheme. In the first
scheme no gear shift occurs and the only concern is persistence of
excitations. It is shown that if the excitations are persistent, mass
and time-varying grade are estimated with good accuracy. In the
second cycle gearshifts occur and the challenge is the unmodelled
dynamics during the shifts which cause large overshoots in the es-
timates. A method is proposed to circumvent this problem and
good estimation results are shown with this provision.

1 Introduction

Strong federal initiatives for increasing the efficiency and safety
of today’s vehicle, and also marketing strategies in industry, has
fuelled extensive research for automation of part of the human
driver tasks. Control strategies have been developed along with
improvements in sensor technology. Issues like ergonomics and
legal barriers have also been studied. Heavy duty vehicles have
received particular attention due to the higher impact that automa-
tion has on the fleet efficiency and fuel economy. Strategies like
platoonning for a fleet of HDV’s have been experimented and has
shown promising. However the closed loop experiments [1] indi-
cate that the longitudinal controllers with fixed gains have limited
capability in handling large parameter variations of an HDV. An
adaptive control approach with an implicit or explicit online esti-
mation scheme for estimation of unknown vehicle parameters can
ensure a much better performance [2, 3, 4].

Among the parameters that largely influence a vehicle’s perfor-
mance, mass and road grade are the most important. The mass
varies largely from trip to trip and mild grades can be serious load-
ings for an HDV. It is therefore important to estimate mass and
road grade explicitly or implicity. In addition to the speed con-
troller, many other controllers like the transmission control unit
and the anti-lock brake system can benefit from these estimates.
The vehicle mass can be accurately estimated by conventional
parameter-adaptive algorithms [5, 6, 7, 8] as long as the road grade
information is available (e.g., driving on a road with zero grade,
using road map information and satellite communication, or us-
ing a GPS antenna to estimate the grade [2], [9]). In [10] using
an on-board accelerometer is proposed for grade estimation. The
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mass is then estimated based on this estimate of the grade. The
adaptive scheme proposed in [3] provides simultaneous mass and
road grade estimation without additional sensors or measurements
of the grade under the assumption of constant road grade.

In a previous paper, the authors proposed a recursive least square
scheme with forgetting for online estimation of mass and time-
varying grade and showed good results in simulation[11]. The
scheme uses the vehicle longitudinal dynamics equation and the
engine torque and vehicle speed available through the Can Bus for
simultaneous estimation of mass and grade. To capture the time
variations of grade, different forgetting factors for grade and mass
were introduced in this recursive least square scheme.

In this paper we demonstrate the performance of this algorithm
with experimental data. The formulation of problem is discussed
briefly in the next section and the rest of the paper is dedicated to
application of the algorithm to experimental data. The data is ob-
tained during two days of highway tests with an experimental HDV
owned by California PATH1. The measured data, its sources and
available standards to interpret the raw data are discussed. Iden-
tification of unknown parameters like rolling resistance and drag
coefficient based on the test data is explained next and the model
of the longitudinal dynamics of the truck is validated with the test
data. Then recursive least square with vector-type forgetting is ap-
plied to the data for estimation of mass and grade. New challenges
compared to estimation with simulated data, include lack of persis-
tent excitations during normal cruise and model mismatch during
gearshift. Ways to avoid these problems are proposed. Good es-
timation results are shown with experimental data in two driving
cycles, with and without gearshifts. Sensitivity of these estimates
to other vehicle parameters is also analyzed.

2 The Estimation Scheme

The estimation algorithm relies on a model of vehicle longitudinal
dynamics. The dynamics of engine rotational speed,ω, can be
described as follows:

r2
gω̇ = (Te−Tf b−Taero−Jeω̇)

1
M
− gr2

g

cosα
sin(β+βµ) (1)

whereJe is the engine crankshaft inertia,M is the total mass of
the vehicle,rg is the total gear ratio,µ is the coefficient of rolling
resistance andg is the acceleration due to gravity.Te is the engine
torque. The torque due to aerodynamic resistance is given by

Taero = Cqv2rg = Cqr3
gω2,

in whichCq is the aerodynamic drag coefficient. The engine speed
is proportional to the vehicle speed, i.e.v = ωrg as long as the
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wheels do not slip and the gear is fixed.β is the road grade,β = 0
corresponds to no inclination,β > 0 corresponds to a uphill grade.
betaµ is defined bytanβµ = µ. We can rewrite the equation in the
following linear form,

y = φTθ, φ = [φ1 φ2]T , θ = [θ1 θ2]T (2)

where

θ = [θ1,θ2]T = [
1
M

, sin(β+βµ)]T

is the parameter of the model to be determined and

y = r2
gω̇, φ1 = Te−Tf b−Taero−Jeω̇, φ2 =− gr2

g

cosα

can be calculated based on measured signals and known variables.

In the classical recursive least square with forgettingθ is selected
such that it minimizes the following loss function:

V(θ,k) =
1
2

k

∑
i=1

λk−i
(

y(i)−φT(i)θ(k)
)2

(3)

whereλ is a positive parameter smaller than1 and is called the
forgetting factor. It is introduced to discard older information in
favor of newer information. The recursive solution will be[12]:

θ̂(k) = θ̂(k−1)+L(k)
(

y(k)−φT(k)θ̂(k−1)
)

(4)

where

L(k) = P(k)φ(k) = P(k−1)φ(k)
(

λI +φT(k)P(k−1)φ(k)
)−1

and

P(k) =
(

I −L(k)φT(k)
)

P(k−1)
1
λ

.

The least-square method with exponential forgetting, as described
above, is suitable for keeping track of the parameters when all vary
with similar rates. It was shown in [11] that least square with a
single forgetting does not converge when the grade is constantly
changing. There we proposed using two distinct forgetting factors
one for mass and one for grade. We employ a vector-type forget-
ting scheme [13, 14, 15] in updating the covariance matrix,P(k),
which bypasses the limitation of a single forgetting factor [11]. In
this scheme the covariance matrixP is updated in the following
way:

P(k) = Λ−1
(

I −L(k)φT(k)
)

P(k−1)Λ−1 (5)

whereΛ = diag(λ1,λ2) andλ1 andλ2 are the forgetting factors for
the first and second parameters respectively. Choosing two values
for λ1 andλ2 will allow more degrees of freedom in the update of
the two entries ofL(k) = [L1(k),L2(k)] and enhances the stability
of the classical method quite noticeably. In the next sessions this
algorithm is used with test data to estimate vehicle mass and road
grade.

3 Experimental Setup

We planned experiments on a Freightliner truck owned by Cali-
fornia PATH 2. The signals are measured through different inter-
faces. The CanBus, which is available on the vehicle, is respon-
sible for communication between the engine and powertrain con-
trollers. Many of the signals are obtained by accessing the CanBus.
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The signals are transferred under certain standards set by SAE3.
Currently the J1939 [16] and its extensions like J1939-71[17] are
standard for heavy duty vehicles. Older equivalents are SAE J1587
for powertrain control applications. Other sources are EBS, GPS
and customized sensors installed by PATH staff. The EBS is the
electronic brake control system and measures signals like wheel
speed. A GPS antenna is available on the PATH truck that pro-
vides, longitude, altitude and latitude coordinates as well as the
truck’s cruise speed. A few sensors had been installed on the truck
including accelerometers in x, y and z directions, tilt sensors,and
pressure transducers for measuring brake pressure at the wheels.

The real time QNX operating system was used for data acquisi-
tion. The system was wired to the Canbus and other sensors and
data was sampled at 50 Hz. A computer specialist monitored the
flow of data and logged the instructions and actions by the driver
and other researchers in a text file that was available to us after the
test. The whole test was carried out open-loop except for some pe-
riods when cruise control was activated. Each run concentrated on
gathering data required for identification of one or more compo-
nents such as service brakes, compression brake, gear scheduling,
etc. For successful identification we made sure that the dynamics
is sufficiently rich, many times by asking the driver to pulse the
commands like throttle and braking. To generate different loading
scenarios, the loading of the trailer was decreased gradually from
full to empty in stages during the test. At each stage the total mass
of the truck was known. Abundant amount of data in distinct driv-
ing scenarios was obtained during two days of test. In the next
sections we explain how the data was used for system identifica-
tion and parameter estimation.

3.1 Measured Signals
Numerous signals are recorded during the experiments, based on
different sensors, each with certain degree of accuracy, and differ-
ent levels of noise. The update rates and sampling rates for the
signals might also vary from one to the other based on the sen-
sors and the port they are read from. In this section we discuss
the source and accuracy of data. Then we proceed to estimate the
parameters based on this measured data.

Velocity is available from J1939 as well as the EBS sensors which
measure the wheel speed. GPS also provides an accurate measure
of the velocity. Engine speed is known from J1939 with good accu-
racy. Engine torque, compression brake and transmission retarder
torques are available through the J1939 port. These engine and
compression torques are calculated based on static engine maps
and do not reflect the very fast dynamics of the engine. How-
ever they are fast enough for our purpose. Pressure transducers are
installed to measure the brake pressure at the wheels. Determin-
ing the actual force developed by service brakes will depend on a
model that translates the pressure into a torque. At this stage we do
not have such a model and therefore in our analysis we will dismiss
portions of data in which service brakes were activated. The trans-
mission status is available form J1939. That determines if the driv-
eline is engaged and whether the torque convertor is locked or if a
shift is in process. The driveline is always flagged engaged when
not in neutral. The torque convertor was shown locked whenever
the vehicle was in the third or a higher gear. Shift in process de-
notes the period of a gear shift when the transmission controller is
in effect. The gear number could not be accessed through J1939
at the time of the test. So the J1587 port was used to get the gear
numbers. Each gear ratio and the final drive ratio were available
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from the transmission manufacturer and were verified by compar-
ing the engine and wheel speed.

The signals recorded from the accelerometers were noisy and
therefore we decided not to use these signals for obtaining accel-
erations. Also the signals recorded from tilt sensors had a small
signal to noise ratio and therefore we could not investigate possi-
bility of using tilt sensors for measuring the road grade. The actual
road grade was extracted from the profile plans of the road.

3.2 Road Grade
The road tests were carried out on a part of the HOV lane of Inter-
state 15 north of San Diego. Within the two days of test, various
driving cycles were completed in a number of round trips on a
twelve kilometer stretch of highway. The test route included some
overpasses with steep grades. This grade was later determined us-
ing the road plans and served as a comparison with the estimated
grade. Although the GPS elevation signal was available in the
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Figure 1: Digitized road elevation and grade.

test-run, the information was often noisy or corrupted as shown
in the upper subplot of figure 1. The most accurate source for the
road grade is the as-built plan available for roads and highways.
Therefore we obtained the profile plans of the experimental track
from CALTRANS4. We then carefully digitized the plans and de-
termined the grade based on the elevations. Figure 1 shows the
digitized elevation and grade. Note that the grade is either con-
stant or varies linearly with distance. That is a natural result of
highway design where the transition between slopes are parabolic.
We used the information from GPS to determine the starting point
of each test run on the digitized elevation map.

3.3 Determining Unknown Parameters
A range for values of drag coefficient and coefficient of rolling re-
sistance for different vehicles is available in handbooks of vehicle
dynamics (e.g. [18]). To select the values that fit our available data
we used the vehicle longitudinal dynamics equation (1) and tuned
the parameters of the model to make the outcomes roughly match
the experimental data. The model used the engine or the retarder
torque, the road grade and the selected gear that were recorded
during the test and based on these inputs the accelerations were
calculated. The accelerations were compared to the accelerations
obtained from the test data. The drag coefficient and rolling re-

4California Department of Transportation

0 50 100 150 200 250 300 350 400 450
0

10

20

30

V
eh

ic
le

 v
el

oc
ity

, m
/s

Vel
J1939

Vel
model

0 50 100 150 200 250 300 350 400 450
0

100

200

300

E
ng

in
e 

S
pe

ed
, r

ad
/s

Engine Speed
J1939

Engine Speed
model

0 50 100 150 200 250 300 350 400 450
−0.5

0

0.5

1

1.5

Time, seconds

A
cc

el
er

at
io

n,
 m

/s
2

Accel
from filtered V J1939

Accel
model

Figure 2: Comparison of the model and real longitudinal dynam-
ics.

sistance were tuned in the feasible range so that calculated and
actual accelerations roughly matched each other. We found co-
efficient of rolling resistance of0.006and drag coefficient of0.7
suitable candidates that result in good match between experiments
and simulation. Figure 2 shows a typical test run with good match
between test data and simulation results for most part of the trip.
During gear changes experiments and simulation results do not
have a good match. This is due to the fact that the gear shift dy-
namics is not considered in the longitudinal dynamics model. In
the model we have assumed that velocity and engine speed are
always proportionally related and that transmission is always en-
gaged. These assumptions only result in local mismatch between
model and experiments and in general the model represents the
longitudinal dynamics adequately well.

Having identified the model of vehicle longitudinal dynamics, we
now can use this model for estimation.

4 Performance of the Estimator with Experimental Data

In the previous sections of this paper, the estimation problem was
formulated and solution was proposed. In [11] the authors had
shown that this scheme works well with simulated data. In a
real scenario the situation can become more challenging due to
higher level of uncertainties. The signals are potentially delayed
and many times the signals are noisy and biased in one direction
rather than being only affected by pure white noise. Moreover, the
delay or noise level in one signal is normally different from the
other signals. Finally, note that what is available from sources like
J1939 is normally not the true value of an entity but an estimate
of the true value through the vehicle/engine management system.
Unmodelled dynamics of the system might result in poor estima-
tion.

The signals in a natural experimental cycle may not always be per-
sistently exciting. As discussed before lack of good excitation re-
sults in poor estimates or even cause estimator windup. In our case,
if the acceleration is constant and there is no gear change, we are
not able to observe enough to determine both mass and grade. In
this case the longitudinal dynamics equation represents essentially
a single mode, making it literally impossible to estimate the two
unknowns. Therefore it is important that in online estimation, rich



pieces of data are detected and used for estimation of both param-
eters. Once a good estimate for mass which is constant is obtained
tracking of variations of grade would be possible even during low
or constant levels of acceleration.

4.1 Modification for Reducing Signal Noise Effect
Direct implementation of (1) in least square estimation requires
differentiation of velocity and engine speed signals. If the mea-
surements are prone to noise, differentiation is not very appealing.
It will magnify the noise levels to much higher values and the dif-
ferentiated data may not be useable. In order to circumvent this
problem we will first integrate both sides of (1) over time and ap-
ply the estimation scheme to the new formulation. Assuming that
mass and coefficient of rolling resistance are constant, integration
of both sides yields:

v(tk)−v(t0) = 1
M

R tk
t0 (Te(t)−Jeω̇(t)

rg(t)
−Ff b(t)−Faero(t))dt−

g
cos(βµ)

R tk
t0 sin(β+βµ)dt

(6)
We can rewrite the above equation in the form of (2),

y = φTθ, φ = [φ1,φ2]T , θ = [θ1,θ2]T

where this time
y(k) = v(tk)−v(t0)

θ = [θ1,θ2]T = [
1
M

,

R tk
t0 sin(β+βµ)dt

(tk− t0)
]T

and

φ1 =
Z tk

t0
(
Te−Jeω̇

rg
−Ff b−Faero)dt, φ2 =− (tk− t0)g

cos(βµ)

Notice thatφ2 is multiplied by(tk−t0) andθ2 is divided by it. This
is to keep the unknown parameterθ2 away from growing fast with
time. In this fashion if the grade,β, is constant,θ2 will remain
constant as well. Employing integration instead of differentiation
helped avoid some serious issues related to signal noise.

4.2 Estimation in Normal Cruise: No Gearshift
We first evaluate the estimation scheme with experimental data
when the gear is constant. A batch of data is used in the first few
seconds of estimation to initialize the estimation scheme. Good
initial estimates are obtained only when the chosen batch is rich in
excitations. Better estimates can be obtained with a smaller batch
when the acceleration has some kind of variation during the batch.
The RLS with vector-type forgetting was used during the rest of
the travel for estimation and tracking.

To reduce the high frequency noise, the torque and velocity signals
were passed through a second order butterworth filter before they
were used in the estimation. The sampling frequency is 50 Hz, and
therefore the Nyquist frequency is 25 Hz. We use the cutoff fre-
quency of 25 Hz for the filter, to ensure that aliasing will not occur.
Figure 3 shows the estimation results for more than five minutes
of continuous estimation. The gear was constant throughout this
period. The initial four seconds of data was processed in a batch to
generate the initial estimates. For the recursive part forgetting fac-
tors of 0.95 and 0.4 were chosen for mass and grade respectively.
While mass is constant, a slight forgetting acts as a damping ef-
fect on the older information and makes the mass estimate a little
more responsive to new information. This showed to result in fur-
ther convergence of mass to its true value. In this estimation the
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Figure 3: Estimator’s performance during normal cruise when
the gear is constant. Forgetting factors for mass and
grade are 0.95 and 0.4 respectively. RMS error in mass
is 350 kg and RMS grade error is 0.2 degrees.

root mean square (RMS) error in mass is 350 kg and the maxi-
mum error is 2.8%. During the recursive section the error in mass
reduces down to a maximum of 1.7%. The RMS error in grade is
0.2 degrees. It can be seen that grade is estimated well during its
variations.

Next we will remedy the estimation problem when gear changes
occur.

4.3 Estimation Results During Gearshift
In the longitudinal dynamics Eq. (1) we assume that engine power
passes continuously through the driveline to the wheels. This as-
sumption is valid only when the transmission and torque convertor
are fully engaged. During a gear change, transmission disengages
to shift to the next gear and during this time the flow of power to the
wheels is reduced and in the interval of complete disengagement
no torque is passed over to the wheels. Moreover the assump-
tion that vehicle speed is proportional to the engine speed by some
driveline ratio is not in effect during this transition and the engine
speed goes through abrupt changes while the change in vehicle ve-
locity is much smoother. Therefore relying on (1) for estimation
will result in very big deviations during gearshift. The bigger the
deviations are the longer it takes the estimator to converge back to
the true parameter values.

Modelling the dynamics during a shift is not simple due to natu-
ral discontinuities in the dynamics. Besides the period when the
transmission is in control does not take more than two seconds
and therefore it is not really necessary to estimate the parameters
during this short period. Therefore we decided to turn off the es-
timator at the onset of a gearshift and turn it back on a second or
two after the shift is completed. The estimates during the shift are
set equal to the latest available estimates. Also the new estima-
tor gain is set equal to the latest calculated gain. This approach
proved to be an effective way of suppressing unwanted estimator
overshoots during gear shift. Figure 4 shows the engine torque,
shift status, vehicle velocity and engine speed during part of an
experiment. We had asked the driver to pulse the throttle off and
on and therefore as seen in the torque plot, the torque is either at
its maximum or drops down to zero. Also two gear shifts occur
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Figure 4: The response during a cycle of pulsing the throttle
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Figure 5: Estimator’s performance when it is always on. Forget-
ting factors for mass and grade are 0.95 and 0.4 respec-
tively. The RMS errors in mass and grade are 420 kg
and 0.77 degrees respectively.

during this time window. As mentioned before the variations in
velocity are smooth but the engine speed has jump discontinuities
both during gear shift and during the throttle on/off. Upon using
the estimator with no on/off logic we observed big overshoots in
the estimates during both the gearshift and the throttle on/off. The
results are shown in Figure 5. The root mean square error in mass
is 420 Kilograms and the RMS grade error is 0.77 degrees which is
a large error. We then used the estimator with the on/off logic. The
results are shown in figure 6. The estimation has improved con-
siderably due to the estimator deactivation during the shifts. The
deviations due to throttle pulsation exist as before but the magni-
tude of these deviations are small and they fade away quickly. In
this estimation the root means square error in mass is 310 kilo-
grams and the RMS grade error is 0.24 degrees which are quite
improved due to the employed estimator logic.

4.4 Sensitivity Analysis
Earlier in this paper the coefficient of rolling resistance and the
drag coefficient were calculated based on matching the model out-
comes and experimental results. We mentioned that these esti-
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Figure 6: Estimator’s performance when it is turned off during
shift. Forgetting factors for mass and grade are 0.95
and 0.4 respectively. The RMS errors in mass and
grade are 310 kg and 0.24 degrees respectively.

mates are rough estimates that meet our needs. We are in general
interested to know how much the mass and grade estimation re-
sults are sensitive to these parameters. In other words we want
to analyze the sensitivity of the estimation scheme with respect to
these parameters.

For this analysis, the rolling resistance and drag coefficient are
varied one at a time and observe the performance of the estimates
and based on these results provide a sense on the sensitivity of
the system. We perform the analysis with the experimental set of
data used in section 4.2 of this paper. Figure 7 shows the sensi-
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Figure 7: Sensitivity of the estimates with respect to drag coeffi-
cient and rolling resistance. Forgetting factors for mass
and grade are 0.95 and 0.4 respectively. Nominal mass
is 21250 kg.

tivity of the estimates with respect to drag coefficient and rolling
resistance. Variations in the coefficient of rolling resistance only
affect the grade estimate. That is because the rolling resistance
and grade affect the longitudinal dynamics in the same way. In a
realistic range, a 50% variation of the coefficient of rolling resis-
tance caused, in the worst case, less than 25% change in the RMS



error of grade estimates. The drag coefficient selection influenced
both mass and grade estimates. Here 25% change in drag coeffi-
cient within a feasible range, cause less than 25% change of error
in grade and mass estimates.

5 Conclusions

Results of simultaneous online estimation of a heavy vehicle mass
and road grade with experimental data are shown in this paper. The
test data was obtained from experiments that were carried out on
Interstate 15 in San Diego in the August of 2002 with an exper-
imental heavy duty vehicle. The experiment setup, the measured
signals and their source and issues like sampling rate and accuracy
are briefly discussed. Using this data we first verify that the vehi-
cle model captures the longitudinal dynamics accurately for most
part of travel. The RLS with multiple forgetting, proposed by the
authors in a previous paper, proved effective with the experimen-
tal data. The real life issues like lack of persistent excitations in
certain parts of the run or difficulties of parameter tracking during
gear shift are explained and suggestions to bypass these problems
are made. Without gear shift and in the presence of persistent ex-
citations mass and grade are estimated with good precision and
variations of grade are tracked. When gearshifts take place, the
estimator shows large overshoots and it takes a few seconds for
these deviations to damp out. We proposed turning off the esti-
mator during and shortly after a gearshift. The estimation results
are improved by this provision. Sensitivity analysis demonstrates
that estimation is not overly sensitive to uncertain parameters of
the system including drag coefficient and rolling resistance.
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