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Abstract— Lithium ion batteries should always be prevented
from overheating and, hence, thermal monitoring is indispens-
able. Since only the surface temperature of the battery can
be measured, a thermal model is needed to estimate the core
temperature of the battery, which can be higher and more
critical. In this paper, an online parameter identification scheme
is designed for a cylindrical lithium ion battery. An adaptive
observer of the core temperature is then designed based on
the online parameterization methodology and the surface tem-
perature measurement. A battery thermal model with constant
internal resistance is explored first. The identification algorithm
and the adaptive observer is validated with experiments on
a 2.3Ah 26650 lithium iron phosphate/graphite battery. The
methodology is later extended to address temperature-dependent
internal resistance with nonuniform forgetting factors. The ability
of the methodology to track the long-term variation of the
internal resistance is beneficial for battery health monitoring.

Index Terms— Adaptive estimation, core temperature, lithium
ion battery, state of health.

I. INTRODUCTION

L ITHIUM ion batteries have been widely considered as
an energy storage device for hybrid electric vehicles

(HEV), plug-in hybrid electric vehicles (PHEV), and battery
electric vehicles (BEV). Thermal management in vehicular
applications is a critical issue for lithium ion batteries because
of their narrow operating temperature range. An accurate
prediction of battery temperature is key to maintaining the
safety, performance, and longevity of these Li-ion batteries.
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Existing high fidelity thermal models can predict the
detailed temperature distribution throughout the cell [1]–[4].
However, these models are not suitable for onboard application
due to their high computational intensity. Reduced order mod-
els typically use one single temperature, the bulk (or average)
temperature, to capture the lumped thermal dynamics of the
cell [4]–[7]. Even though the single temperature approximation
is computationally efficient, it might lead to over-simplification
since the temperature in the battery core can be much higher
than in the surface [8].

Lumped thermal models capturing both the surface and
the core temperatures of the cell have also been studied in
[8] and [9]. Such simplified models are efficient for onboard
application due to their limited number of states. The accuracy
of the model parameters is of great importance since it
determines the accuracy of the core temperature estimation.
Model parameters can be approximated based on the geometry
of the battery and the volume averaging physical properties
of its components [9], but such approximation may not be
accurate due to the complicated layered structure of the cell
and the interfaces between the layers. The parameters can
also be determined by fitting the model to the data obtained
from experiments [8], involving designed input excitation and
measurement of the battery core temperature. This laboratory-
oriented parameterization is invaluable for determining the
initial values of parameters. However, some of the parameters,
such as the internal resistance, may change over the battery
lifetime due to degradation. In this case, parameter mismatch
leads to inaccurate temperature estimation, and thus identifi-
cation of present value of the parameters is needed.

A recursive parameter identification scheme is designed,
in this paper, to automatically identify the thermal model
parameters based on the signals commonly measured in a
vehicle battery management system (BMS). The algorithm
is simple enough to run on a typical automotive onboard
controller. An adaptive observer is then designed for the
core temperature estimation. A lumped battery model with
constant internal resistance is investigated first, where the least
square algorithm is sufficient for identification. In reality, the
internal resistance of the battery can be temperature and/or
state of charge (SoC)-dependent [5], [10], [11] and hence time-
varying. The pure least square algorithm may cause errors
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in the identification if the actual parameters are nonconstant.
Nonuniform forgetting factors are augmented to the least
square algorithm to address the issue of time-varying internal
resistance.

Apart from the short-term variability due to conditions,
such as temperature, the internal resistance of the lithium ion
battery may also increase over its lifetime due to degradation.
This is because the solid electrolyte interphase (SEI) may
grow in thickness [12]–[14] and reduce the conductivity of
the SEI. Hence, the least square algorithm with nonuniform
forgetting factors is also applied to track the long-term growth
of the internal resistance. The growth of the internal resistance
can be viewed as an important indication of the state of health
(SOH) of the battery, and used as a reference for the onboard
BMS to extend the life of the batteries. Parameterization
of battery model and adaptive monitoring of the battery
voltage and SOH have been explored previously in various
seminal papers [15]–[17], but this paper is among the first
to adaptively monitor the temperatures (especially the core
temperature) of batteries and SOH from a thermal perspective.

II. LUMPED THERMAL MODEL OF A CYLINDRICAL

LITHIUM ION BATTERY

The radial thermal dynamics of a cylindrical battery are
modeled based on the classic heat transfer problem by assum-
ing heat generation located at the core and zero heat flux at
the center, as shown in Fig. 1.

The two-state approximation of the radially distributed
thermal model is defined as [9]

CcṪc = I 2 Re + Ts − Tc

Rc
(1a)

Cs Ṫs = T f − Ts

Ru
− Ts − Tc

Rc
(1b)

where the two states are the surface temperature Ts and
the core temperature Tc. The temperature variation along
the battery height is neglected here, assuming homogeneous
conditions.

Heat generation is approximated as a concentrated source
of Joule loss in the battery core, computed as the product
of the current I squared and the internal resistance Re.
The internal resistance Re is considered as an unknown
parameter to be identified. This simplification can lead to
cycle-dependent values for lumped resistance Re, or even
nonconstant resistance within a single cycle, because Re

can vary with conditions, such as temperature, SoC and
degradation [5], [10], [11], [13]. In subsequent sections,
first, Re will be identified online as a constant under a drive
cycle, and then identification of Re as a varying parameter
will be addressed in Section VII. Heat generation calculated
based on an equivalent circuit model has also been used
for thermal model parameterization in another ongoing
work [18].

Heat exchange between the core and the surface is modeled
by heat conduction over a thermal resistance, Rc which is
a lumped parameter aggregating the conduction and contact
thermal resistance across the compact and inhomogeneous
materials. A convection resistance Ru is modeled between the

Fig. 1. Single cell radially lumped thermal model.

surface and the surrounding coolant to account for convective
cooling. The value of Ru is a function of the coolant flow
rate, and in some vehicle battery systems, the coolant flow
rate is adjustable to control the battery temperature. Here,
it is modeled as a constant as if the coolant flow rate is
fixed to accommodate the maximum required cooling capacity.
A model with the more complicated varying Ru has also been
investigated in [19].

The rates of temperature change of the surface and the
core depend on their respective lumped heat capacity. The
parameter Cc is the heat capacity of the jelly roll inside the
cell, and Cs is related to the heat capacity of the battery casing.

The complete parameter set for this model includes Cc, Cs ,
Re, Rc, and Ru , of which the values cannot be easily calcu-
lated. Consider the conduction resistance Rc as an example.
Theoretically, Rc can be calculated based on the conductivity
and dimensions of the wound cell electrode assembly and
the aluminum casing. However, since the rolled electrodes
are composed by the cathode, anode, current collectors, and
separator, it will be difficult to obtain an accurate value
for the overall conductivity. Moreover, Rc also includes the
contact thermal resistance between the rolled electrodes and
the casing, which involves various contact properties adding
to the complexity of the calculation.

Therefore, model identification techniques are developed in
the following section to obtain the lumped phenomenological
values of the model parameters based on measurable inputs
and outputs of the model.

III. PARAMETERIZATION METHODOLOGY

For model identification, a parametric model

z = θT φ (2)

is derived first by applying Laplace transformation to the
model, where z is the observation, θ is the parameter vector,
and φ is the regressor [20]. Both z and φ should be measured
or can be generated from measured signals.

With a parametric model, various algorithms can be chosen
for parameter identification, such as the gradient and the least
squares methods. The method of least squares is preferred for
noise reduction [20].
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The recursive least squares algorithm is applied in an
online fashion, as parameters are updated continuously [20]

θ̇ = P
εφ

m2 (3a)

Ṗ = −P
φφT

m2 P (3b)

ε = z − θT φ (3c)

m2 = 1 + φT φ (3d)

where m is a normalization factor that enhances the robustness
of parameter identification.

In some cases, to make the observation z and the regressors
φ proper (or causal), a filter (1/�(s)) will have to be designed
and applied. The parametric model will then become

z

�
= θT φ

�
. (4)

The convergence and robustness of the identification are
guaranteed if the regressors, φ in (8), are stationary signals
and satisfy the persistent excitation (PE) conditions [20]. The
PE conditions are satisfied if there exist some time interval
T0, and positive number α1 and α0, such that

α1 IM ≥ U(t) = 1

T0

∫ t+T0

t
φ(τ)φT (τ )dτ ≥ α0 IM ∀t ≥ 0

(5)
where IM is the identity matrix with the same dimension as
U(t) [20]. This criteria can be used to test whether a drive
cycle can ensure robust parameter convergence.

IV. ONLINE PARAMETERIZATION OF THE

BATTERY THERMAL MODEL

In this section, the parameterization scheme described pre-
viously is applied to the cylindrical battery thermal model in
(1). A parametric model for identification can be derived by
taking the Laplace transformation of (1) and replacing the
unmeasured Tc with measured signals I , T f , and Ts

s2Ts − sTs,0 = Re

CcCs Rc
I 2 + 1

CcCs Rc Ru
(T f − Ts)

+ 1

Cs Ru
s(T f − Ts) − 1

CcCs Rc

×(
(Cc + Cs)sTs − Cs Ts,0 − CcTc,0

)
(6)

where Ts,0 and Tc,0 are the initial surface and core tempera-
tures. When the initial core temperature, Tc,0, is considered to
be the same as the initial surface temperature, Ts,0, as if the
battery starts from thermal equilibrium, (6) becomes

s2Ts − sTs,0 = Re

CcCs Rc
I 2 + 1

CcCs Rc Ru
(T f − Ts)

− Cc +Cs

CcCs Rc
(sTs −Ts,0)+ 1

Cs Ru
s(T f −Ts). (7)

It is assumed here that T f is regulated as a steady output of
the air-conditioning unit and thus sT f = 0, giving

s2Ts − sTs,0 = Re

CcCs Rc
I 2 + 1

CcCs Rc Ru
(T f − Ts)

−
(

Cc + Cs

CcCs Rc
+ 1

Cs Ru

)
(sTs − Ts,0). (8)

If T f is a time-varying input to the model, sT f should not
be dropped. In this case, T f can also be used as an input
excitation in the parametric model. A second order filter should
be applied to the observation and the regressors in (8) to make
them proper. The filter takes the form

1

�(s)
= 1

(s + λ1)(s + λ2)
(9)

where λ1 and λ2 are the time constants of the filter. The values
of λ1 and λ2 can be chosen to filter the noises with frequencies
higher than the temperature dynamics.

For the parametric model in (8)

Z(s) = s2Ts − sTs,0

�(s)
(10a)

	(s) =
[

I 2

�(s)

T f − Ts

�(s)

sTs − Ts,0

�(s)

]T

(10b)

θ = [α β γ ]T (10c)

where

α = Re

CcCs Rc
(11a)

β = 1

CcCs Rc Ru
(11b)

γ = −
(

Cc + Cs

CcCs Rc
+ 1

Cs Ru

)
. (11c)

For implementation in a practical system, the identification
algorithm is formulated along with signals z and φ in the
time domain based on (3), or in the discrete time domain
based on equivalent formula. For example, z(t), whose
Laplace transform is (s2Ts − sTs,0/�(s)), can be obtained by
calculating the convolution of Ts(t) − Ts,0 and the inverse
Laplace transform of (s2/�(s)). In this way, calculation of
the second order derivative of Ts , s2Ts , which can be easily
corrupted by noises, is avoided.

By using the parametric model in (8), only three lumped
parameters, α, β, and γ , can be identified under the condition
of persistent input excitation [20]. Prior knowledge of two of
the physical parameters must be assumed so as to determine
a set of unique solutions for the original five physical para-
meters, Cc, Cs, Re, Rc, and Ru from α, β, and γ . Of the
five physical parameters, the internal resistance Re may vary
due to aging and should be identified online. The conduction
resistance Rc is difficult to estimate as explained previously.
The convection resistance Ru will be influenced by the coolant
flow conditions around the cell depending on the packaging.
Therefore, it is not easy to obtain prior knowledge of those
three parameters. The heat capacities Cc and Cs , which
depend on the thermal properties and the mass of the rolled
electrode assembly and the casing, are relatively constant over
lifetime. In addition, the heat capacities will only affect the
speed of transient response of the model without having any
impact on the steady state temperatures. Consequently, the
heat capacities Cc and Cs are selected to be the presumed
parameters.

With Cc and Cs presumed and α, β, and γ identified, Re,
Rc, and Ru can be obtained by solving the following set
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(a) (b)

Fig. 2. Instrumentation of the battery core temperature. (a) Drill press setup
of the battery. (b) Installation of the thermocouples.

of equations:
β(Cc + Cs)Cs Ru

2 + γ Cs Ru + 1 = 0 (12a)

Rc = 1

βCsCc Ru
(12b)

Re = αCcCs Rc. (12c)

The quadratic equation for Ru in (12) can lead to two
solutions, but the right one can be decided based on the coolant
flow conditions based on [21].

The least squares algorithm in (3) can then be applied for
parameter identification. In [19] and [22], the methodology has
been applied and verified by simulation with a battery thermal
model with assumed parameters. In the following section, the
parameterization is further validated by experiments.

V. EXPERIMENT VALIDATION

A. Experiment Set-Up and Measurements

Experiments have been conducted to validate the
designed parameterization scheme. A 2.3Ah A123 26650
LiFePO4/graphite battery is cycled with a Bitrode cycler
under the control of a customized testing system by A&D
Technology. A Cincinnati Sub-Zero environmental simulation
chamber is used to regulate the temperature of the coolant air
flow around the battery.

T-type thermocouples are installed both on the battery
casing to measure its surface temperature, and also inside
the battery core to measure the core temperature. During the
fabrication process of the 26 650 cylindrical cell, the electrode
assembly is wound up to form a roll, leaving a cavity in the
center. To measure the core temperature, the battery was drilled
inside an argon-filled glove box through to its central cavity,
where the thermocouple was inserted, as shown in Fig. 2. The
battery was then sealed and taken out of the glove box for
experiments.

Inside the thermal chamber, the battery was placed in a
designed flow chamber as shown in Fig. 3, where a fan was
mounted at one end to regulate the air flow around the cell.
The speed of the fan is controlled by pulse width modulation
signals to change the air flow rate. The flow chamber is used
to emulate the pack air cooling conditions where the coolant
flow rate is adjustable (like in [19]). A T-type thermocouple

Fig. 3. Schematic diagram of the flow chamber.

is placed near the battery inside the flow chamber to measure
the air flow temperature T f .

B. PE of Input Signals

A driving cycle, the urban assault cycle (UAC) [23], is
applied as the current excitation to the battery in galvanostatic
mode. The UAC was originally a velocity cycle for military
vehicles. The current profile for a battery pack of a hybrid
military vehicle under UAC was derived in [23] by applying a
certain power management strategy. The type of battery used
in the experiment (LiFePO4 26650) is different from the one in
[23], hence the UAC current cycle taken from [23] is rescaled
for the experiments. The original 20-minute cycle is repeated
4 times to let the battery temperature reach periodic steady
state. The resulting scaled drive cycle current is plotted in
Fig. 4. The normalized unit of C-rate is commonly used to
describe the load applied to the battery and 1 C corresponds
to the magnitude of the current that depletes the battery in
one hour (in this case 2.3 A). The negative current indicates
the discharge of the battery as the energy is drawn from the
battery to drive the vehicle, and the positive current represents
the regenerative braking during which the battery is charged.
The discharge load is fairly evenly distributed between 1 C and
7 C, except at around −8 C which indicates rapid acceleration.
The charge load is mostly below 7 C and occasionally reaches
above 10 C during drastic braking. The SoC evolution under
this cycle is also plotted in Fig. 4, showing a decrease from
about 50% to roughly 35%.

The temperature of the thermal chamber is controlled at
26 °C. The resulting battery surface temperature Ts and air
flow temperature T f are measured and recorded by the data
acquisition system. The measured Ts and T f under the scaled
UAC cycles are plotted in Fig. 5, which along with I are then
used for parameter identification.

The criteria in (5) is then applied to check if the UAC
cycle satisfies the PE condition, which requires the regressors
to be stationary signals first. As can be seen in Fig. 5, the
surface temperature Ts will vary periodically after the battery
finishes the warm-up phase at about 1000 s. Consequently, the
regressors, which include I 2, T f − Ts , and sTs , will become
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Fig. 4. Scaled UAC current excitation. (a) Currents in time series.
(b) Histogram of the currents. (c) SoC variation under the cycle.
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Fig. 5. Measured Ts and T f under scaled UAC cycle. (a) Surface temperature
Ts . (b) Flow temperature T f .

stationary signals, as shown in Fig. 6. The U(t) matrix can
then be calculated to check the PE conditions. It is noted that
the measurements taken during the warm-up period can also
be used for identification, even though they are not stationary
signals [19].

Since the current input consists of repeated UAC cycles
(each lasting for 1200 s), the values of U(t) only need
to be calculated over a time interval T0 = 1200 s for
1000 s ≤ t ≤ 2200 s. It is noted that in this case, U(t) is
not a diagonal matrix, and thus its eigenvalues are calculated
to check the PE conditions. The smallest and the largest
eigenvalues of U(t), λmax, and λmin, are plotted in Fig. 7.
It can be concluded from Fig. 7 that α1 in (5) can be
found as 0.086 s−1, which is the maximum of λmax(t), and
α0 as 2.4 × 10−4 s−1, which is the minimum of λmin(t).
Consequently, under the UAC cycle, the regressors satisfy the
conditions of PE. Furthermore, α0 are related to the speed
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Fig. 6. Evolution of regressors φ in periodic steady state.
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Fig. 7. Evolution of the eigenvalues of U(t) in steady state. (a) Smallest
eigenvalue. (b) Largest eigenvalue.

of the convergence for parameter identification. Specifically,
when the gradient method is used, 2α−1

0 is the upper limits
of the time constant of the parameter convergence [20], which
would be

τ ≤ 8333 s (13)

in this case. Based on (13), the 90% settling time for the
convergence under the gradient search algorithm is expected
to be less than 19186 s. It is noted that 19186 s is a
rather conservative estimation of the convergence time. In
real applications, the convergence is usually accelerated by
increasing the adaptive gain [20], [24].

C. Results and Discussion

The measured signals I , Ts , and T f in Figs. 4 and 5 are
used for recursive least squares parameterization. The three
parameters to be identified, Ru , Re, and Rc, are initialized with
the initial guess values in Table I. For the heat capacity, the
single Cp in [8] is split into Cc and Cs here representing the
battery core and surface heat capacities, respectively. The heat
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Fig. 8. Online parameter identification results. (a) Convergence of the lumped
parameters. (b) Convergence of the original parameters.

TABLE I

INITIAL GUESS AND IDENTIFICATION RESULTS OF PARAMETERS

Parameters Ru (KW−1) Re(m�) Rc(KW−1)

Initial Guess 1.5 30 0.5

ID Results 3.03 11.4 1.83

capacity of the battery core, Cc, is assumed to be 67 JK−1,
slightly smaller than Cp in [8]. The heat capacity of the
battery surface, Cs , is assumed to be 4.5 JK−1 based on the
dimensions of the aluminum casing of the 26 650 battery and
the specific heat capacity of aluminum.

The results of the recursive identification are plotted in
Fig. 8. It is noted that the identification procedures are started
after the first 1000 s when the temperature enters periodic
steady state. It can be seen that starting at some random
initial values, the three parameters converge to the values
listed in Table I. Fig. 8(a) shows the convergence of the
lumped parameters α, β, and γ in (8), and Fig. 8(b) shows the
convergence of the physical parameters Ru , Rc, and Re, which
are obtained by solving (12). It is noted that the convergence
time is within the range (less than 19 186 s ) discussed in
Section V-B, which is strictly speaking only valid for the
gradient method. The convergence rate is accelerated here by
increasing the initial adaptive gain P0 [24], [25], which is the
initial value of P(t) in (3).

For validation purposes, the identified parameters are
applied to (1) to estimate both the battery surface temperature
Ts and the core temperature Tc. The estimate is then compared
with the measurement, as plotted in Fig. 9. The estimated sur-
face temperatures Ts match the measurement exactly, since Ts

is directly used for identification. It is noted that the measured
core temperature Tc also agrees closely with the measured
Tc (which was not used for parameterization), showing the
capability of the parameterized model to predict the correct
battery core temperatures. Once the parameterization scheme
is validated, it can be run in onboard BMS to estimate the
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Fig. 9. Experimental validation. (a) Estimated surface temperature Ts versus
measured. (b) Estimated core temperature Tc versus measured.

TABLE II

COMPARISON OF THE IDENTIFIED PARAMETERS TO [8]

Parameters Value Equivalence in [8] Value

Rc(KW−1) 1.83 Rin(KW−1) 3.2 ∼ 3.4

Ru (KW−1) 3.03 Rout(KW−1) 8.4 ∼ 9.1

Cc(JK−1) 67 C p(JK−1) 73 ∼ 78

Cs(JK−1) 4.5 - -

core temperatures in real time without actually measuring it
(as in the lab set-up).

The identification results are also compared to those in [8],
where thermal parameters of the same battery are identified
based on the measurement of both surface and core temper-
atures under designed current inputs. In [8], the battery is
modeled with a single dynamic state (the core temperature),
and the surface temperature is related to the core temperature
with an algebraic equation by assuming the surface heat
capacity to be zero. In [8], the heat generation is pre-calculated
by resistive heat dissipation (due to ohmic voltage drop) plus
entropic heat, and in this paper, the entropic heat is ignored and
the heat generation is accounted for by multiplying the current
square with an identified parameter Re. It is noted that the
entropic heat is generally small comparing to the resistive heat,
especially in the middle SoC range here as shown in Fig. 4.

Table II summarizes the comparison between the thermal
parameters identified in [8] and in this paper. It can be seen
that the identified value of the conduction resistance (Rc)
between the core and the surface is smaller than that in [8].
This is probably because the surface temperature in this paper
is measured at the aluminum casing instead of at the outside
paper cover (as in [8]), which indicates better heat conduction.
The identified convection resistance between the surface and
the coolant Ru is significantly smaller than that in [8], which
can be explained by the fact that during the experiment, the
air flow is constantly blown into the flow chamber by the fan,
which enhances the convective cooling through the coolant air.
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VI. ADAPTIVE BATTERY CORE

TEMPERATURE ESTIMATION

In controlled applications, an observer is often designed
based on a plant model to estimate the states of a plant, espe-
cially ones that are not measured, e.g., the core temperature Tc

of the battery in this case. Such model-based observers can be
categorized as either an open-loop observer or a closed-loop
observer. For a linear system

ẋ = Ax + Bu (14)

where x are the states and u are the inputs, an open-loop
observer is simply ˙̂x = Ax̂ + Bu (15)

as the estimated states x̂ are calculated by the model solely
based on the inputs u. For the battery thermal model specifi-
cally, we have

x = [Tc Ts]T (16a)

u = [I 2 T f ]T (16b)

A =
[− 1

RcCc

1
RcCc

1
RcCs

− 1
Cs

(
1
Rc

+ 1
Ru

)
]

(16c)

B =
[

Re Rc
Cc

0
0 1

Ru Cs

]
. (16d)

However, the estimation by such an open-loop observer can
often be corrupted by unknown initial conditions, and noises
in the measurement of the inputs. To address such issues,
a closed-loop observer, such as a Luenberger observer or a
Kalman filter, is often designed to estimate the states based on
the model and the feedback of some measurable outputs [26]

˙̂x = Ax̂ + Bu + L(y − ŷ) (17a)

y = Cx + Du (17b)

ŷ = Cx̂ + Du (17c)

where y are the measured system outputs, x̂ and ŷ are
estimated states and output, L is the observer gain, and A,
B , C , and D are model parameters. For the battery thermal
model, since the surface temperature Ts is measurable, we
have

C = [0 1] (18a)

D = 0. (18b)

It is noted that the difference between the measured and
the estimated output is used as the feedback to correct
the estimated states. Comparing with an open-loop observer,
the closed-loop observer can accelerate the convergence of
the estimated states to those of the real plant under unknown
initial conditions, e.g., a Luenberger observer [26], or optimize
the estimation by balancing the effect of unknown initial
conditions and noises, e.g., a Kalman filter [27].

By taking the structure of a closed-loop observer, an
adaptive observer is then designed based on the certainty
equivalence principle [20]

Cc
˙̂Tc = I 2 R̂e + T̂s − T̂c

R̂c
+ l1(Ts − T̂s) (19a)

Fig. 10. Online identification scheme and adaptive observer structure.
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Fig. 11. Response of the closed-loop adaptive observer. (a) Adaptive
estimation of the surface temperature versus measurement. (b) Adaptive
estimation of the core temperature versus measurement.

Cs
˙̂Ts = T f − T̂s

R̂u
− T̂s − T̂c

R̂c
+ l2(Ts − T̂s) (19b)

where T̂s and T̂c are the estimated surface and core tempera-
tures, and the observer parameters R̂e, R̂c, and R̂u are taken
from the online identification results in Section V. The block
diagram of the adaptive observer is shown in Fig. 10. The
input current I , coolant temperature T f , and the measured
surface cell temperature Ts are fed into the parameter identifier
to estimate model parameters Ru , Re, and Rc. The adaptive
observer uses the estimated parameters to estimate the core
and the surface temperatures. The estimated Ts is compared
to the measurement and the error is fed back to correct
the core temperature and surface temperature estimation. The
estimations for both parameters and temperatures are updated
at each time step.

The data in Section V are used to test the response of the
adaptive observer, as plotted in Fig. 11. The initial estimated
temperatures of the adaptive observer are set at 30 °C for both
the surface and the core, whereas the correct value is 26 °C,
and the parameters are initialized with the initial guess values
in Table I. It can be seen from Fig. 11 that the estimated
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surface temperature Ts converges to the actual values much
faster than the core temperature Tc. The reason is that the sur-
face temperature Ts is accessible by the adaptive observer both
via parameter identification and closed-loop error feedback,
and thus the observer can adjust its estimation of Ts quickly
based on direct reference of the measurement. But for the core
temperature Tc, which is not measured, its estimation accuracy
depends on the accuracy of the model parameters. Therefore,
the convergence of Tc to the actual values will only happen
after the identified parameters converge to the correct model
parameters (at approximately 3000 s).

VII. PARAMETERIZATION OF THE BATTERY THERMAL

MODEL WITH TEMPERATURE-DEPENDENT Re

For most lithium ion batteries, their internal resistance Re

depends on temperature and SoC, [5], [6], [11]. In general
cases, Re is high when the temperatures are low and when the
SoC is close to 0% or 100%. An Arrhenius function is often
used to describe the relationship between Re and the battery
(core) temperature Tc, as

Re = Re,ref exp

(
Tref

Tc

)
(20)

where Re,ref is the reference resistance value at a certain
reference temperature Tref , and Tref and Tc are in K . It is noted
that the change in resistance with respect to SoC is negligible
in the normal vehicle battery operating range (20%−80% SoC)
and thus is not considered here. The relationship between Re

and Ts described by (20) is plotted in Fig. 12, by taking
Re,ref = 0.091 m� and Tref = 1543 K.

As a result, in real application, Re will be varying as the
temperature fluctuates. Such variation cannot be neglected
when the power demands are high and dramatically varying.
Simulation is used in this section for illustration. Simulated
variation of Re due to Tc fluctuation under a drastic current
cycle is shown in Fig. 13. It can be seen that the drastic current
variation creates a 10 °C of fluctuation in the battery core
temperature Tc. The resulting variation of Re is about 20% as
shown by the blue line in the bottom plot of Fig. 13.

Since the least squares identification algorithm in (3) iden-
tifies each parameter as a constant, when Re is varying, errors
will be observed in Re identification as shown in Fig. 13.
This will not only introduce errors in Re estimation but might
also affect the estimation of other parameters, and eventually
corrupt the estimation of the core temperature Tc. To address
such issue, a least squares algorithm with forgetting factors is
then designed to identify Re as a time-varying parameter.

A. Identification Design With Forgetting Factor

When forgetting factors are adopted, most parts of the least
square algorithm will be the same as (3), except that

Ṗ(t) = ηT P(t)η − P(t)
φ(t)φT (t)

m2(t)
P(t) (21)

where η is the forgetting factor matrix [20].
The least square identification algorithm tries to find the

optimal parameters that best fit the inputs and outputs over
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Fig. 12. Dependence of Re on Tc.
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Fig. 13. Errors in Re estimation when the temperature varies significantly.
(a) Drive cycle current. (b) Fluctuation of the battery core temperature.
(c) Errors in Re identification.

the whole data set. A pure least square algorithm treats
each data point as equal, no matter if it is acquired most
recently, or obtained much earlier. However, when a forgetting
factor is applied, the data points will be weighted differently.
Specifically, the newly acquired data are favored over the older
ones. In the form shown in (21), the weight of the data will
decay exponentially with the time elapsed, and the larger the
forgetting factor is, the faster the decay will be. Consequently,
the least square algorithm can track the parameters when they
are time-varying.

The least square algorithm with forgetting factors can be
applied to the original linear parametric model in (7). Of the
three lumped parameters, namely α, β, and γ in (7), only α
is related to time varying Re, and all the others are constant.
Therefore, nonuniform forgetting factors should be adopted
with the η matrix designed as

η =
⎡
⎣η1 0 0

0 0 0
0 0 0

⎤
⎦ (22)
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Fig. 14. Identification of temperature-dependent internal resistance by the
least square algorithm with nonuniform forgetting factors.
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where η1 is the forgetting factor associated with α (and
hence Re).

Simulation is conducted with η1 = 0.25, and the results of
identification are shown in Fig. 14. It can be seen that that
the identified Re can follow the simulated varying Re after
the recursive least squares online identification with forgetting
factors is activated at 1500 s. As shown in Fig. 15, the
adaptive observer, taking the structure in (19) and parameters
identified online (now Re varying as shown in the bottom
plot of Fig. 14), can estimate the battery core temperature Tc

accurately after the identified Re converges to the simulated
Re at around 3700 s.

VIII. DEGRADATION DETECTION BY MONITORING

GROWTH IN INTERNAL RESISTANCE

The recursive least square algorithm with forgetting factors
can also track the long-term growth of the internal resistance,
which can be used as an indication for the SOH of the battery.

(a)

(b)

Fig. 16. Simulated identification of internal resistance subject to degrada-
tion. (a) Identification of Re with both short-term and long-term variation.
b) Simulated and identified cycle-average Re .

Fig. 17. Adaptive estimation of battery subject to degradation.

The growth of the internal resistance due to degradation
is a process that occurs slowly over the battery lifetime. The
internal resistance might increase substantially over hundreds
of cycles or days according to [12]–[14].

In this paper, the growth in internal resistance due to
degradation is simulated and used to test the capability of
the identification algorithm to detect the slow increase of the
resistance. The internal resistance Re, originally a function
of the core temperature Tc, is now augmented with a term,
which is linearly increasing over time. The drive cycle used for
simulation is the same as shown in the upper plot of Fig. 13,
but is repeated for 350 times and the rate of growth in internal
resistance is set at 0.14%/cycle. Although not modeled here,
the rate of degradation may also increase with the temperature
according to [12]–[14].

The results of the online identification are shown in Fig. 16.
It can been seen from Fig. 16 that the simulated internal



1754 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 5, SEPTEMBER 2013

resistance gradually increases over time while still subject to
short-term variation due to the fluctuation of the battery core
temperature. The identified Re follows both the long-term and
short-term variation of the simulated one with a small delay as
shown in the inset of Fig. 16. In real vehicle application, since
Re is varying all the time, it is difficult to evaluate SOH by
the instantaneous value of Re and the averaged Re might be
a better choice instead. The mean value of Re for each UAC
cycle is plotted in the lower half of Fig. 16. It is noted that the
averaged Re can capture the long-term increase of the internal
resistance and the identified value is a good estimation of the
real one.

The adaptive monitoring of the temperatures is also shown
in Fig. 17. It is noted that as the internal resistance of the
battery grows, the temperatures will also be elevated due to the
increase of the heat generated. Since the observer is updated
with the identified Re in real time, it estimates both the core
and the surface temperatures with high accuracy.

IX. CONCLUSION

The core temperature of a lithium ion battery, which
is usually not measurable, is of great importance to the
onboard BMS, especially when the batteries are subject to
drive cycles with high C-rate. The core temperature can
be estimated by a two states thermal model, and the para-
meters of the models are critical for the accuracy of the
estimation. In this paper, an online parameter identifica-
tion scheme based on least square algorithm was designed
for a cylindrical lithium ion battery thermal model. The
online identification scheme can automatically identify model
parameters based on the commonly available onboard sig-
nals. The updated parameters were then used to predict the
unmeasured core temperature using a model-based observer
as shown with an A123 26 650 lithium iron phosphate
battery.

When the internal resistance of the battery is temperature-
dependent, which is a more realistic situation, the least square
algorithm was augmented with nonuniform forgetting factors.
The algorithm with forgetting factors cannot only track the
time-varying internal resistance, but also guarantee unbiased
identification of the remaining constant parameters. The online
parameterization also shows the capability to track the long-
term variation of the internal resistance due to aging or degra-
dation/abuse. The growth in internal resistance can be used
for the SOH monitoring of the batteries. The methodology
developed has been verified with simulations and is to be
validated with experiments in the immediate future.

Applications, such as HEV, BEV, and PHEV, usually have
hundreds, or even thousands, of battery cells in series to
meet their high power and energy requirements. Hence the
vehicle level battery thermal management will be performed
on a module basis, instead of on a cell basis. The single
cell thermal model used in this paper can be scaled up to a
pack model by considering cell-to-cell thermal interaction, and
the parameterization methodology and the adaptive observer
design will be investigated for the pack level model. Initial
results of this paper can be found in [22].
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