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Abstract
Modern heavy-duty vehicles are equipped with a compres-
sion braking mechanism that augments their braking capabil-
ity and reduces the wear of the conventional friction brakes.
In this paper we consider a vehicle speed control problem
using a continuously variable compression braking mecha-
nism. The variability of the compression brake is achieved
through the control of the brake valve of the vehicle’s tur-
bocharged diesel engine. An adaptive controller is designed
to ensure good speed tracking performance in brake-by-wire,
or vehicle-following, driving scenarios even during large vari-
ations in mass and road grade. Our approach is to first con-
sider the model without compression brake actuator dynamics
and derive a Model Reference Adaptive Controller using the
Speed-Gradient procedure. Then, the actuator dynamics are
included in the design via the use of the backstepping pro-
cedure. The backstepping controller is implemented with a
simplified numerical differentiator-based approximation.

1 Introduction

In Intelligent Vehicle Highway Systems (IVHS), the major
goals are to increase highway capacity and to enhance driv-
ing safety by automatic longitudinal and lateral control of ve-
hicles [1]-[3]. Modern Heavy Duty Vehicles (HDV) operate
very close to the speed, acceleration and headway range of
passenger vehicles. At the same time, their mass and inertia
are much larger. Hence powerful acceleration/deceleration ac-
tuation is needed to enable the driver to safely merge, follow
and react to traffic flow changes.

To improve the braking performance of the HDVs, additional
braking mechanisms, such as a compression brake, are fre-
quently used. In the compression braking mode the conven-
tional gas exchange process of the turbocharged diesel en-
gine that powers the HDV is altered and the engine is trans-
formed into a compressor that absorbs kinetic energy from
the crankshaft. During compression braking mode the fuel in-
jection and combustion are inhibited. The kinetic energy is
dissipated through the work done by the pistons to compress
the air charge. The compressed air is consequently released
in the exhaust manifold through a secondary opening of the
exhaust valve at the end of the compression stroke. We call
the secondary opening of the exhaust valve as Brake Valve
Opening (BVO). Due to geometric constraints, the valve lift
profile is considerably different for the exhaust and the brake
events, as shown in Figure 1. In conventional compression
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braking mechanisms, BVO is fixed with respect to the crank
angle degrees resulting in on-off retarding mechanisms [4].
Selective activation of the BVO of a number of cylinders can
provide discretely variable retarding power as in [5]. The re-
tarding mechanism we consider here allows continuously vari-
able retarding power through control of BVO [6]. The timing
of BVO (specified in crank angle degrees) is the input signal
to the compression braking mechanism and is physically lim-
ited to the rangevcb;min = 620 tovcb;max = 680 degrees after
Top Dead Center (TDC) (see Figure 1).
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Figure 1: Lift profiles for exhaust, intake and brake events.

The variable compression brake increases the overall decel-
erating capability of the vehicle and can be used as the sole
decelerating actuator without the assistance of friction brakes
during non-aggressive maneuvers. Consequently, the applica-
tion and intensity of the friction brakes can be reduced result-
ing in a significant decrease in the vehicle maintenance costs.

Thus, in this paper we concentrate on the longitudinal speed
control problem using only variable compression braking. We
consider braking control for a Class-8 HDV during operation
on a descending grade with the objective to achieve vehicle
speed tracking despite unknown road conditions. To ensure
good speed tracking even during large variations in vehicle
mass (payload) and road grade, an adaptive controller is de-
veloped.

The first results on adaptive longitudinal control design for
HDV are presented in [7, 8], where the authors develop
an adaptive controller for a HDV with conventional friction
brakes using the direct adaptation of PIQ controller gains. In
this paper, we derive a Model Reference Adaptive Controller
in terms of system parameter estimates. The updates for the
estimates are generated using the Speed-Gradient technique
[9]. Our control design approach is to first consider the model
without compression brake actuator dynamics. Then the ac-
tuator dynamics are accounted for in the controller through
the use of a backstepping procedure. The backstepping con-
troller is implemented using a numerical differentiator based
approximation.

To model the effect of the novel braking actuator, namely vari-
able compression brake, on the engine and vehicle operation,
a detailed crank angle based engine model has been developed



in [10]. The control design in this paper is based on a reduced-
order nonlinear approximation of the crankangle-based model
developed in [11].

In addition to speed tracking we are also able, under addi-
tional persistence of excitation type conditions, to estimate the
unknown parameters, namely vehicle mass and road grade.
These estimates can be used for other purposes in Advanced
Vehicle Control Systems (AVCS). As we will show, the con-
vergence of the estimates is ensured when the desired speed
value changes in a step-wise or other periodic fashion. This is
typically guaranteed in urban driving cycles. If the excitation
does not occur during normal driving, it has to be introduced
artificially.

The paper is organized as follows. In Sections 2 and 3 we
review the models for longitudinal vehicle speed and com-
pression brake actuator dynamics and we formally state the
control problem. Sensitivity of the input-output response due
to variations in mass and road grade is shown in Section 4.
The observed sensitivity serves as a motivation for us to pur-
sue the adaptive control approach. In Section 5 we develop a
Model Reference Adaptive Controller (MRAC) assuming in-
stantaneous actuator response. In Section 6, we extend the
control design to the case with the actuator dynamics. The
controller performance is demonstrated through simulations
in Section 7.

2 Vehicle Dynamics Model

Consider the vehicle operation during a driving maneuver on
a descending grade withβ degrees inclination (β = 0 corre-
sponds to no inclination,β < 0 corresponds to a descending
grade). It is assumed that during the descent, the engine is not
fueled and is operated in the compression braking mode.

A lumped parameter model approximation is used to describe
the vehicle longitudinal dynamics during compression brak-
ing. For fixed gear operation the engine crankshaft rotational
speed,ω, is expressed by:

Jtω̇= Tcb + rg(Fβ�Fqdr) (1)
where,

ω is the engine rotational speed, (rad/sec), related to the ve-
hicle speed valuev = ωrg,(m/sec)

rg =
rω

gt g f d
is the total gear ratio, whererω is the wheel di-

ameter,gt is the transmission gear ratio,g f d is the final drive
gear ratio (assumed to be known constants)

Jt = mr2
g + Je is the total vehicle inertia reflected to the en-

gine shaft (unknown constant, depends on the vehicle loading
conditions), whereJe is the engine crankshaft inertia

m is the mass of the vehicle (unknown constant, depends on
the mass of payload), (kg)

Fqdr = Cqr2
gω2 is the quadratic resistive force (primarily,

force due to aerodynamic resistance, but we also include fric-
tion resistive terms)

Cq =
Cd Aρ

2 +Cf is the quadratic resistive coefficient, where
Cd is the aerodynamic drag coefficient,ρ is ambient air-
density, A is the frontal area of the vehicle,C f is the friction

coefficient (assumed to be known constants)

Fβ(m;β) is the force due to road grade (β) (assumed to be
an unknown constant) and the rolling resistance of the road(µ):
Fβ(m;β) =�µgmcosβ�mgsinβ

Tcb is the shaft torque applied by the engine to the driveshaft
(supposed to be negative during compression braking).

The speed control problem is to ensure that the engine rota-
tional speedω tracks the desired reference speedωd(t) as the
vehicle proceeds the descending grade:ω! ωd(t): This en-
sures thatv! vd(t) as long as the gear ratio remains constant.

Remark 1: We assume the existence of a higher level super-
visory controller which selects transmission gear ratio,gt , if
a frequent saturation of BVO timing is detected. Specifically,
if the limits of the compression braking torque are frequently
reached, a different transmission gear ratio can be selected.
With an appropriate gear selection one can effectively “size”
the power due to gravity that is reflected on the engine shaft,
see (1). The control scheme we develop below can be easily
extended to include gear ratio optimization and selection.

Remark 2: We assume that the desired vehicle speedωd(t) is
derived from the driver’s brake pedal position through a cali-
bration map. These calibration maps are typically developed
by skilled drivers and can be used in a brake-by-wire mode. In
Automated Highway Systems (AHS) the value ofωd(t) may
be generated from a lead vehicle.

3 Brake Actuator Dynamics

In [10] we have developed a detailed crank angle based engine
model that describes the engine dynamics during compres-
sion braking and transition between fueling and compression
braking modes. This high-order dynamic model captures the
manifold and cylinder emptying/filling dynamics and the tur-
bocharger rotational dynamics. In [11] we show that the high-
order model can be approximated by a lower-order model.
Namely, the compression brake torque on the crankshaft,Tcb,
is calculated using the following first order differential equa-
tion:

Ṫcb =�λcb(Tcb�Tst); (2)

whereλcb is approximated with a linear function of the en-
gine speed,λcb = η0+ η1ω : The value ofλcb is implicitly
limited by upper and lower limits on the engine speed. The
feasible values ofλcb are within the rangeλcb;min = λcb(ωmin)

to λcb;max = λcb(ωmax). The steady-state braking torque,Tst ,
is a nonlinear function of the engine speedω and the BVO
timing vcb:

Tst(ω;vcb) = α0+α1ω+α2vcb +α3vcbω+α4ω2
: (3)

The fact thatλcb depends onω is due to the turbocharger
and manifold filling dynamics that become faster as the en-
gine speed increases. We assume that the BVO timing can be
controlled instantaneously or considerably faster then the en-
gine dynamics in (2). Engine manufacturers are intensively
pursuing the development of appropriate hardware [6]. Con-
sequently, we assume for now that the system (2), (3) repre-
sents the dominant compression brake actuator dynamics. The



BVO timing limits translate into limits on the braking torque
Tst;min(ω) = Tst(vcb;max;ω), Tst;max(ω) = Tst(vcb;min;ω).

The controller is designed directly in terms of torqueTst , while
the corresponding value of the BVO timingvcb is obtained by
inverting the static torque regression (3).

4 Sensitivity Analysis

A sensitivity analysis and an evaluation of the model varia-
tions and uncertainties across operating regimes allows us to
assess the difficulties in the control design. In particular, vari-
ations in the vehicle mass greatly affect the vehicle dynam-
ics. The mass for the system can vary as much as 400 percent
from a configuration of being a tractor only, to a configuration
of being a tractor and one or more trailers. Figure 2 demon-
strates the differences in the linearized open loop system fre-
quency response for different values of the vehicle mass. Sim-
ilar trends can be ascertained for the road grade and gear ratio
variations. Clearly, adaptation is needed to ensure that the ve-
hicle response remains the same irrespective of these parame-
ter variations.
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Figure 2: Frequency response of the transfer function from∆vcb to
∆ω for various values of the vehicle mass and gear ratio. This plot
is from [10] where additional dynamics were introduced by a BVO
hydraulic mechanism (not treated here).

5 Model Reference Adaptive Controller

In this section we develop a Model Reference Adaptive Con-
troller (MRAC) which ensures the vehicle speed tracking dur-
ing braking irrespective of variations in vehicle mass and road
grade. The design of the controller algorithm is first done for
the case without the actuator dynamics. In Section 6 we ex-
tend the controller algorithm to account for the actuator dy-
namics.

Let us assume that the massm of the vehicle (which depends
on the mass of payload) is an unknown constant. This implies
that the total vehicle inertiaJt(m) is an unknown constant as
long as the gear ratio remains fixed. Moreover, assume that
the road gradeβ (i.e. the hill inclination angle) is an unknown
constant, which implies that the forceFβ(m;β) due to road
grade (β) and the rolling resistance of the road (µ) is an un-
known constant as well. Then the vehicle model (1) in the

parametric form is

ω̇= θ�1
1 (u� r3

gCaω2
+θ2); (4)

whereu is the shaft torqueTcb, andθ1, θ2 are unknown pa-
rameters. In particular,θ1 = Jt > 0; θ2 = rgFβ:

Remark: Note that the sign ofθ1 which is the total vehicle
inertia is always positive. This property is critical to being
able to develop a MRAC design.

To design MRAC we introduce a reference model that cap-
tures the desired closed-loop behavior. Specifically,

ω̇m =�λωm +λωd; (5)

whereωd(t) is the desired vehicle speed andλ > 0 controls
the speed of response, whereby larger values ofλ correspond
to faster responses.

Denoting the tracking error bye = ω�ωm, we obtain:

ė = θ�1
1 (u� r3

gCaω2
+θ2)+λωm�λωd: (6)

Using the certainty equivalence principle, ifθ1, θ2 were
known we would define the feedback law as follows:

u = r3
gCaω2

�θ2+θ1λ(ω�ωd): (7)

If θ1, θ2 were known, this controller would guaranteee(t)!
0. Since the parameters are unknown, we replace them by
their estimates,̂θ1, θ̂2 in the control law (7):

u = r3
gCaω2

� θ̂2� θ̂1λ(ω�ωd): (8)

The parameterŝθ1, θ̂2 will be adjusted by the adaptation law.
The error model is given by:

ė =�λe+θ�1
1 λ(ω�ωd)(θ1� θ̂1)+θ�1

1 (θ2� θ̂2): (9)

The update laws are obtained using the Speed Gradient
methodology [9]. This is a general technique for controlling
nonlinear systems through an appropriate selection and min-
imization of a goal function. The controller is designed to
provide the decrease of the goal function along the trajecto-
ries of the system. The goal functionQ is selected to address
the speed tracking objective, namelyQ(e) = θ1

2 e2
� 0: Note

thatQ(e)> 0 if e 6= 0 becauseθ1 > 0. Then,

Q̇ = θ1eė =�λθ1e2
+ eλ(ω�ωd)(θ1� θ̂1)+ e(θ2� θ̂2);

and in accordance with the SG approach, we calculate the
derivative ofQ̇ with respect tôθ1 andθ̂2 (the gradient of the
”speed” ) and define the following adaptation laws:

˙̂θ1 =�γ1∇ θ̂1
Q̇ = γ1eλ(ω�ωd); γ1 > 0: (10)

˙̂θ2 =�γ2∇ θ̂2
Q̇ = γ2e; γ2 > 0: (11)

The stability results can be proved using the following Lya-
punov function:

V (e; θ̃) = Q(e)+0:5γ�1
1 θ̃2

1+0:5γ�1
2 θ̃2

2 � 0; (12)



whereθ̃ = [θ̃1 θ̃2 ]
T ; andθ̃i = θi� θ̂i; i = 1;2: Calculating

the time derivative ofV , using the adaptation laws (10)-(11),
we obtain

V̇ = Q̇�γ�1
1 θ̃1

˙̂θ1�γ�1
2 θ̃2

˙̂θ2 =�λθ1e2
� 0:

The last inequality means thatV (e(t); θ̃(t)) is a non-increasing
function of time. It implies boundedness ofV (e(t); θ̃(t)) and
Q(e(t)) that, in turn, means boundedness ofe(t), θ̃(t) (thanks
to radial unboundedness ofQ(e)). Moreover, using the Bar-
balat’s lemma, we can prove thate(t) ! 0 (i.e. ω! ωm).
Coupled withωm !ωd , this implies thatω! ωd(t), i.e. the
speed tracking goal is achieved.

Remark: In the actual implementation of (10)-(11) we em-
ploy the feasible range projection whereby the updates are
stopped if the parameter estimates attempt to leave the region
where the parameters are known to physically lie in. This
is done to improve parameter estimate transient behavior and
also to ensure that the estimates always lie within a physically
reasonable range.

Notice that the time derivative of the Lyapunov function de-
pends only one(t) and does not depend oñθ(t), i.e. the so-
lution e(t); θ̃(t) is stable but not asymptotically stable (with
respect to the whole state vector). In order to guarantee
the convergence of the estimatesθ̂1(t), θ̂2(t) to their true
valuesθ1, θ2, we need to require that the vector function
R = [1 λ(ω�ωd)]

T is persistently excited [13]. Practi-
cally, the persistent excitation condition can be satisfied if the
value ωd varies significantly (e.g., includes at least 2 sinu-
soids: one of the two sinusoids can be a constant function,
i.e. a sinusoid with zero frequency, the other one should
have a non-zero frequency). In this case, we can guaran-
tee the identifying properties of our control algorithm, i.e.
limt!∞θ̂1 = θ1; limt!∞θ̂2 = θ2: This implies that the esti-
mates of the vehicle massm and road gradeβ will tend to
their true values. The simulation results which demonstrate
the parameter convergence are shown in Section 7.

6 Controller Design Including Brake Actuator Dynamics

In this section, we extend the design to include the brake ac-
tuator dynamics (2). The system with the actuator dynamics
is given by:

Jtω̇ = Tcb + rg(�Cqr2
gω2

+Fβ) (13)

Ṫcb = �λcb(Tcb�Tst); (14)

whereTst is now considered as a control input andλ cb is a
function of engine speedω.

The higher order controller that takes the dynamics in (2) into
account is designed using a backstepping approach [12]. In
accordance with this iterative procedure we have to consider
Tcb as avirtual input of the first-order system (13) and design
a stabilizing control lawα(e; θ̂1; θ̂2) and the update laws for
θ̂1, θ̂2 for (13) as the first step. This has been done in the
previous Section and

α(e; θ̂1; θ̂2) = r3
gCaω2

� θ̂2� θ̂1λ(ω�ωd): (15)

The error betweenTcb andα is denoted byz:

z = Tcb�α(e; θ̂1; θ̂2):

To account for this error, we augment the Lyapunov function
(12) with the term 0:5z2 :

Va(e;z; θ̃1; θ̃2) =V (e; θ̃1; θ̃2)+0:5z2
: (16)

The time-derivative ofVa along the trajectories of the closed-
loop system (13), (14), (15), (10),(11) is given by

V̇a = θ1eė�γ�1
1 θ̃1

˙̂θ1�γ�1
2 θ̃2

˙̂θ2+ z(Ṫcb� α̇) =
= �θ1λe2

+ z(e�λcb(Tcb�Tst)� α̇) (17)

Therefore, to guarantee negative definiteness ofV̇a we need to
chooseTst to make the last term of (17) to be equal to�kz,
wherek > 0 is a controller gain. This is achieved with the
following control law:

Tst = Tcb +λ�1
cb (�kz� e+ α̇) (18)

whereα̇ = (2Cqr3
g)ω̇�λ(ω�ωd)

˙̂θ1�
˙̂θ2+ θ̂1λω̇d:

Sincez = Tcb�α,

Tst = (1� kλ�1
cb )Tcb�λ�1

cb (e� kα� α̇) (19)

Note that (18) (or (19)) depend on several quantities that we
do not measure directly. In particular, we do not measure the
shaft torqueTcb. To deal with this issue, we use an open-loop
observer,

˙̂T cb =�λcb(T̂cb�Tst);

and use the estimatêTcb in place ofTcb.

Remark: In order to guarantee thate(t)! 0; z(t)! 0 with
the observer, the gaink in (18) (or (19)) has to be selected
so thatk > λcb;max=4. Indeed, defineecb = T̂cb � Tcb: Then,
ėcb = �λcbecb; andTst = Tcb + ecb + λ�1

cb (�kz� e+ α̇): Let
Va1 =Va +

1
2e2

cb: Calculating the derivative ofVa1

V̇a1 = �λe2
� kz2

+ zλcbecb�λcbe2
cb =

= �λe2
� (k�λcb=4)z2

�λcb(ecb�0:5 � z)2
;

we obtain thatV̇a1 is negative definite with respect toe andz
if k > λcb;max(ω)=4� λcb(ω)=4.

Note that (18) also depends on the time derivative ofω which
is not measured (unless there is an accelerometer on-board).
Therefore, to make the above controller implementable, we
have to introduce an approximation of the derivative operator
(so called“dirty derivative” [8], which is given by a transfer
function s

s=τ+1, τ > 0) for ω̇. Then the control law (19) is
modified as follows:

Tst = (1� kλ�1
cb )T̂cb�λ�1

cb (e� kα� α̇)

α̇ = (2Cqr3
g)ω̇f �λ(ω�ωd)

˙̂θ1�
˙̂θ2+ θ̂1λω̇d

˙̂T cb = �λcb(T̂cb�Tst)

ω̇f = τ(ω�ωf ): (20)

With the approximation of the derivative, only semi-global
practical stability results can be guaranteed, see the general
procedure for deriving such results in [14].



7 Simulation Results

To illustrate the operation of the adaptive controller we have
designed, we consider the response to a desired vehicle speed
profile ωd , given by a step-wise periodic function that may
be encountered in typical urban driving scenarios. Initially,
large parameter errors result in a poor tracking performance.
The tracking improves as the adaptation proceeds. During this
particular periodic excitation inωd the vehicle mass and road
grade estimates tend to their true values in 45 sec as shown in
Figure 5. From Figure 4 we note thatvcb saturates during the
transients (the saturation limits are indicated by dash-dotted
lines). To provide some compensation for saturation we use
an approach from [15]. The idea is to replaceωd by ωd; f

whereω̇d; f =�λ f (ωd; f �ωd)+ r, whereλ f is large andr is
selected to preserve the value ofV̇a when saturation occurs and
it is zero if there is no saturation. Unlike in [15], the scheme
is here applied to an adaptive system. In particular, the satura-
tion compensation scheme is active during the last downward
step inωd (see Figure 3) and one can observe that the virtual
referenceωd; f slows down to enable the system to catch up
with it. The controller scheme including the reference modi-
fication performed well for all the driving scenarios we tested
through simulations. The analysis of the closed-loop stability
properties for this more complex application is left for future
work.
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